I'm trying to use skorch class to execut GridSearch on a classifier.
I tried running with the vanilla NeuralNetClassifier
object, but I haven't found a way to pass the Adam optimizer only the trainable weights (I'm using pre-trained embeddings and I would like to keep them frozen). It's doable if a module is initialized, and then pass those weights with the optimizer__params
option, but module needs an uninitialized model. Is there a way around this?
net = NeuralNetClassifier(module=RNN, module__vocab_size=vocab_size, module__hidden_size=hidden_size,
module__embedding_dim=embedding_dim, module__pad_id=pad_id,
module__dataset=ClaimsDataset, lr=lr, criterion=nn.CrossEntropyLoss,
optimizer=torch.optim.Adam, optimizer__weight_decay=35e-3, device='cuda',
max_epochs=nb_epochs, warm_start=True)
The code above works. However, with the batch_size set at 64, I've got to run the model for the specified number of epochs on every batch! Which is not the behavior I'm seeking. I'd be grateful if someone could suggest a nicer way to do this.
My other issue is with subclassing skorch.NeuralNet
. I run into a similar issue: figuring out a way to pass only the trainable weights to Adam optimizer. The code below is what I've got so far.
class Train(skorch.NeuralNet):
def __init__(self, module, lr, norm, *args, **kwargs):
self.module = module
self.lr = lr
self.norm = norm
self.params = [p for p in self.module.parameters(self) if p.requires_grad]
super(Train, self).__init__(*args, **kwargs)
def initialize_optimizer(self):
self.optimizer = torch.optim.Adam(params=self.params, lr=self.lr, weight_decay=35e-3, amsgrad=True)
def train_step(self, Xi, yi, **fit_params):
self.module.train()
self.optimizer.zero_grad()
yi = variable(yi)
output = self.module(Xi)
loss = self.criterion(output, yi)
loss.backward()
nn.utils.clip_grad_norm_(self.params, max_norm=self.norm)
self.optimizer.step()
def score(self, y_t, y_p):
return accuracy_score(y_t, y_p)
Initializing the class gives the error:
Traceback (most recent call last):
File "/snap/pycharm-community/74/helpers/pydev/pydevd.py", line 1664, in <module>
main()
File "/snap/pycharm-community/74/helpers/pydev/pydevd.py", line 1658, in main
globals = debugger.run(setup['file'], None, None, is_module)
File "/snap/pycharm-community/74/helpers/pydev/pydevd.py", line 1068, in run
pydev_imports.execfile(file, globals, locals) # execute the script
File "/snap/pycharm-community/74/helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile
exec(compile(contents+"\n", file, 'exec'), glob, loc)
File "/home/l/Documents/Bsrc/cv.py", line 115, in <module>
main()
File "/home/l/B/src/cv.py", line 86, in main
trainer = Train(module=RNN, criterion=nn.CrossEntropyLoss, lr=lr, norm=max_norm)
File "/home/l/B/src/cv.py", line 22, in __init__
self.params = [p for p in self.module.parameters(self) if p.requires_grad]
File "/home/l/B/src/cv.py", line 22, in <listcomp>
self.params = [p for p in self.module.parameters(self) if p.requires_grad]
File "/home/l/anaconda3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 739, in parameters
for name, param in self.named_parameters():
AttributeError: 'Train' object has no attribute 'named_parameters'
That is not correct, you can pass an initialized model as well. The documentation of the model parameter states:
The problem is that when passing an initialized model you cannot pass any
module__
parameters to theNeuralNet
as this would require the module to be re-initialized. But of course that's problematic if you want to do a grid search over module parameters.A solution for this would be to overwrite
initialize_model
and after creating a new instance loading and freezing the parameters (by setting the parameter'srequires_grad
attribute toFalse
):