I am attempting to map data from mongodb-hadoop connector inside a spark application. I have not other errors prior to this one so im assuming that the connection to mongodb was successful. im using the following code to map:
JavaRDD<AppLog> logs = documents.map(
new Function<Tuple2<Object, BSONObject>, AppLog>() {
public AppLog call(final Tuple2<Object, BSONObject> tuple) {
AppLog log = new AppLog();
BSONObject header =
(BSONObject) tuple._2().get("headers");
log.setTarget((String) header.get("target"));
log.setAction((String) header.get("action"));
return log;
}
}
);
The code fails with this:
16/10/12 19:42:31 ERROR Executor: Exception in task 0.0 in stage 0.0 (TID 0)
java.lang.NullPointerException
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:64)
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:57)
at org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1027)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:372)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/10/12 19:42:31 WARN TaskSetManager: Lost task 0.0 in stage 0.0 (TID 0, localhost): java.lang.NullPointerException
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:64)
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:57)
at org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1027)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:372)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/10/12 19:42:31 ERROR TaskSetManager: Task 0 in stage 0.0 failed 1 times; aborting job
16/10/12 19:42:31 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool
16/10/12 19:42:31 INFO TaskSchedulerImpl: Cancelling stage 0
16/10/12 19:42:31 INFO DAGScheduler: ShuffleMapStage 0 (show at DataframeExample.java:83) failed in 1.704 s
16/10/12 19:42:31 INFO DAGScheduler: Job 0 failed: show at DataframeExample.java:83, took 2.370636 s
Exception in thread "main" org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 1 times, most recent failure: Lost task 0.0 in stage 0.0 (TID 0, localhost): java.lang.NullPointerException
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:64)
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:57)
at org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1027)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:372)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1280)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1268)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1267)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1267)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:697)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:697)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1493)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1455)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1444)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:567)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1813)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1826)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1839)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:215)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1904)
at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1385)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1315)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1378)
at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:178)
at org.apache.spark.sql.DataFrame.show(DataFrame.scala:402)
at org.apache.spark.sql.DataFrame.show(DataFrame.scala:363)
at org.apache.spark.sql.DataFrame.show(DataFrame.scala:371)
at com.hbfinance.DataframeExample.run(DataframeExample.java:83)
at com.hbfinance.DataframeExample.main(DataframeExample.java:89)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:64)
at com.hbfinance.DataframeExample$1.call(DataframeExample.java:57)
at org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1027)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.processInputs(TungstenAggregationIterator.scala:372)
at org.apache.spark.sql.execution.aggregate.TungstenAggregationIterator.start(TungstenAggregationIterator.scala:622)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1.org$apache$spark$sql$execution$aggregate$TungstenAggregate$$anonfun$$executePartition$1(TungstenAggregate.scala:110)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.sql.execution.aggregate.TungstenAggregate$$anonfun$doExecute$1$$anonfun$2.apply(TungstenAggregate.scala:119)
at org.apache.spark.rdd.MapPartitionsWithPreparationRDD.compute(MapPartitionsWithPreparationRDD.scala:64)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:297)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:264)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:73)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
at org.apache.spark.scheduler.Task.run(Task.scala:88)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:214)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
16/10/12 19:42:31 INFO SparkContext: Invoking stop() from shutdown hook
16/10/12 19:42:31 INFO SparkUI: Stopped Spark web UI at http://178.62.18.22:4040
16/10/12 19:42:31 INFO DAGScheduler: Stopping DAGScheduler
16/10/12 19:42:31 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
16/10/12 19:42:31 INFO MemoryStore: MemoryStore cleared
16/10/12 19:42:31 INFO BlockManager: BlockManager stopped
16/10/12 19:42:31 INFO BlockManagerMaster: BlockManagerMaster stopped
16/10/12 19:42:31 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
16/10/12 19:42:31 INFO RemoteActorRefProvider$RemotingTerminator: Shutting down remote daemon.
16/10/12 19:42:31 INFO RemoteActorRefProvider$RemotingTerminator: Remote daemon shut down; proceeding with flushing remote transports.
16/10/12 19:42:31 INFO SparkContext: Successfully stopped SparkContext
16/10/12 19:42:31 INFO ShutdownHookManager: Shutdown hook called
16/10/12 19:42:31 INFO ShutdownHookManager: Deleting directory /tmp/spark-c9ba1976-0c79-4a43-b261-1e7c98139a6e
One of variable, used in your mapper class, has null value.
What can be null?
tuple
parameterheaders
object insideWe don't have your test data, you must check by yourself what can be null. It's not an issue with Spark, but with your internal code.
Just debug your application or do if-else blocks and you'll find what value is null. If it is a problem with tuple parameter, you can do
documents.filter (x -> x != null).map (...)
to filter all nullable values from RDD