I'm working on improving the speed of a function (for a dissimilarity measure) I'm writing which is quite similar mathematically to the Euclidean distance function. However, when I time my function compared to that implemented in the daisy function from the cluster package, I find quite a significant difference in speed, with daisy performing much better. Given that (I'm assuming) a dissimilarity measure would require O(n x p) time due to the need to compare each object to itself over all variables (where n is number of objects and p is number of variables), I find it difficult to understand how the daisy function performs so well (near constant time, from the few experiments I've done) relative to my simple and direct implementation. I present the code I have used both to implement and test below. I have tried looking through the r source code for the implementation of the daisy function, but I found it difficult to understand. I found no nested for loop. Any help with understanding why this function performs so fast and how I could possibly modify my code to have similar speed would be very highly appreciated.
euclidean <- function (df){
no_obj <- nrow(df)
dist <- array(0, dim = c(no_obj, no_obj))
for (i in 1:no_obj){
for (j in 1:no_obj){
dist_v <- 0
if(i != j){
for (v in 1:ncol(df)){
dist_v <- dist_v + sqrt((df[i,v] - df[j,v])^2)
}
}
dist[i,j] <- dist_v
}
}
return(dist)
}
data("iris")
tic <- Sys.time()
dst <- euclidean(iris[,1:4])
time <- difftime(Sys.time(), tic, units = "secs")[[1]]
print(paste("Time taken [Euclidean]: ", time))
tic <- Sys.time()
dst <- daisy(iris[,1:4])
time <- difftime(Sys.time(), tic, units = "secs")[[1]]
print(paste("Time taken [Daisy]: ", time))
one option:
Largest bottleneck in your code is selecting
data.frameelements in loop (df[j,v])). Maybe changing it tomatrixalso could improver speed. I believe there could be more performant approach on stackoverflow, you just need to search by correct keywords...