I am trying to use numba
to speed up a function that takes another function as argument. A minimal example would be the following:
import numba as nb
def f(x):
return x*x
@nb.jit(nopython=True)
def call_func(func,x):
return func(x)
if __name__ == '__main__':
print(call_func(f,5))
This, however, doesn't work, as apparently numba
doesn't know what to do with that function argument. The traceback is quite long:
Traceback (most recent call last):
File "numba_function.py", line 15, in <module>
print(call_func(f,5))
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/dispatcher.py", line 330, in _compile_for_args
raise e
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/dispatcher.py", line 307, in _compile_for_args
return self.compile(tuple(argtypes))
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/dispatcher.py", line 579, in compile
cres = self._compiler.compile(args, return_type)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/dispatcher.py", line 80, in compile
flags=flags, locals=self.locals)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 740, in compile_extra
return pipeline.compile_extra(func)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 360, in compile_extra
return self._compile_bytecode()
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 699, in _compile_bytecode
return self._compile_core()
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 686, in _compile_core
res = pm.run(self.status)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 246, in run
raise patched_exception
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 238, in run
stage()
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 452, in stage_nopython_frontend
self.locals)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/compiler.py", line 841, in type_inference_stage
infer.propagate()
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/typeinfer.py", line 773, in propagate
raise errors[0]
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/typeinfer.py", line 129, in propagate
constraint(typeinfer)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/typeinfer.py", line 380, in __call__
self.resolve(typeinfer, typevars, fnty)
File "/opt/local/Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/numba/typeinfer.py", line 402, in resolve
raise TypingError(msg, loc=self.loc)
numba.errors.TypingError: Failed at nopython (nopython frontend)
Invalid usage of pyobject with parameters (int64)
No type info available for pyobject as a callable.
File "numba_function.py", line 10
[1] During: resolving callee type: pyobject
[2] During: typing of call at numba_function.py (10)
This error may have been caused by the following argument(s):
- argument 0: cannot determine Numba type of <class 'function'>
Is there a way to fix this?
It depends if the
func
you pass tocall_func
can be compiled innopython
mode.If it can't be compiled in nopython mode then it's impossible because numba doesn't support python calls inside a nopython function (that's the reason why it's called nopython).
However if it can be compiled in nopython mode you can use a closure:
That approach has some obvious downsides because it needs to compile
func
andinner
every time you callcall_func
. That means it's only viable if the speedup by compiling the function is bigger than the compilation cost. You can mitigate that overhead if you callcall_func
with the same function several times:Just a general note: I wouldn't create numba functions that take a function argument. If you can't hardcode the function numba can't produce really fast functions and if you also include the compilation cost for closures it's mostly just not worth it.