I am trying to split a very large (22GB) CSV file, using both chunks and a condition on the nth character of a given column in my data.
I have been trying quite helplessly to combine this: Python: Split CSV file according to first character of the first column
with something like this but I have hit a wall. I had a condition on a column not being null here, but I would like instead to split my files according to the nth character of a given column.
Is there anyway to create smaller csv files based on such a condition. any help would be enormously appreciated.
A summary of my data would look like this:
sourcename | date_naissance | date_deces | date_mariage | place |
---|---|---|---|---|
dgfkf47 | YYYYMMDD | YYYYMMDD | etc. | etc. |
fhfidk67 | YYYYMMDD | YYYYMMDD | etc. | etc. |
kgodj45 | YYYYMMDD | etc. | etc. | |
paoror76 | YYYYMMDD | wwwwwww | etc. | etc. |
poldidj90 | YYYYMMDD |
what I want to do is create a series of smaller files I can use later to analyse the data by splitting them according to the 7th character of the column ID. I know how to do it in 5X10 as it fits in my memory and I simply use groupby, but I am stuck for a very large. as ask does not seem to let me iterate groupby.
My strategy now was to do all cleaning operation on Dask ,including creating a new column containing only the 7th character, and then output smaller files that could be loaded in pandas and groupedby this column.
I have got so far as this for now, but I would love to know if there is a simple way to do this:
import dask.dataframe as dd
import glob, os
import pyarrow.parquet
import pyarrow as pa
from dask import multiprocessing
PATH = r"/RAW DATA/TEST/"
os.chdir(PATH)
for file in glob.glob("**/*_clean.csv", recursive=True):
ddf = dd.read_csv(file, encoding='iso-8859-1', sep=';', dtype={'insee': 'object',
'ref_document': 'object', 'ref_interne_sourcename': 'object',
'sexe': 'object', 'profession': 'object', 'date_naissance': 'object', 'date_mariage': 'object', 'date_deces': 'object'})
# read to parquet
ddf.to_parquet('file_clean.csv.parquet', engine='pyarrow', schema={'insee': pa.string(),
'ref_document': pa.string(), 'ref_interne_sourcename': pa.string(),
'sexe': pa.string(), 'profession': pa.string(), 'date_naissance': pa.string(), 'date_mariage': pa.string(), 'date_deces': pa.string()})
ddf = dd.read_parquet('file_clean.csv.parquet', engine='pyarrow')
# split dates
ddf['date_naissance']= dd.to_datetime(ddf['date_naissance'], format='%Y%m%d', errors='coerce')
ddf['date_mariage']= dd.to_datetime(ddf['date_mariage'], format='%Y%m%d', errors='coerce')
ddf['date_deces']= dd.to_datetime(ddf["date_deces"], format='%Y%m%d', errors='coerce')
ddf['jour_naissance'] = ddf['date_naissance'].dt.day
ddf['mois_mariage'] = ddf['date_naissance'].dt.month
ddf['annee_mariage'] = ddf['date_naissance'].dt.year
ddf['jour_mariage'] = ddf['date_mariage'].dt.day
ddf['mois_mariage'] = ddf['date_mariage'].dt.month
ddf['annee_mariage'] = ddf['date_mariage'].dt.year
ddf['jour_deces'] = ddf['date_deces'].dt.day
ddf['mois_deces'] = ddf['date_deces'].dt.month
ddf['annee_deces'] = ddf['date_deces'].dt.year
# drop columns
del ddf['date_naissance']
del ddf['date_mariage']
del ddf['date_deces']
# create IDTAG column
ddf['IDTAG'] = ddf['sourcename'].str[6].fillna('')
namefile = os.path.splitext(file)[0]
ddf.to_csv(namefile)
for partfile in glob.glob('**/*.part'):
os.rename(partfile, (os.path.splitext(partfile)[0]) + "_{}_part.csv".format(namefile))
for partfilecsv in glob.glob("**/*_part.csv", recursive=True):
part_df = pd.read_csv(partfilecsv, encoding='iso-8859-1', sep=';')
# get a list of columns
cols = list(part_df)
# move the column to head of list
cols.insert(0, cols.pop(cols.index('IDTAG')))
# reorder
part_df = part_df.loc[:, cols]
# group by IDTAG
def firstletter(Index):
firstentry = part_df.iloc[Index, 0]
return firstentry[0]
for letter, group in part_df.groupby(firstletter):
group.to_csv((os.path.splitext(partfilecsv)[0]) + '_source_{}.csv'.format(letter))
Well this how I managed to do it - followed by another script to merge the smaller files produced. Surely a more elegant solution exists. Happy to learn.