As far as I know, the C compiler (I am using GCC 6) will scan the code in order to:
- Finding syntax issues;
- Allocating memory to the program (Static allocation concept);
So why does this code work?
int main(){
int integers_amount; // each int has 4 bytes
printf("How many intergers do you wanna store? \n");
scanf("%d", &integers_amount);
int array[integers_amount];
printf("Size of array: %d\n", sizeof(array)); // Should be 4 times integer_amount
for(int i = 0; i < integers_amount; i++){
int integer;
printf("Type the integer: \n");
scanf("%d", &integer);
array[i] = integer;
}
for(int j = 0; j < integers_amount; j++){
printf("Integer typed: %d \n", array[j]);
}
return 0;
}
My point is:
How does the C compiler infer the size of the array during compilation time?
I mean, it was declared but its value has not been informed just yet (Compilation time). I really believed that the compiler allocated the needed amount of memory (in bytes) at compilation time - That is the concept of static allocation matter of fact.
From what I could see, the allocation for the variable 'array' is done during runtime, only after the user has informed the 'size' of the array. Is that correct?
I thought that dynamic allocation was used to use the needed memory only (let's say that I declare an integer array of size 10 because I don't know how many values the user will need to hold there, but I ended up only using 7, so I have a waste of 12 bytes).
If during runtime I have those bytes informed I can allocate only the memory needed. However, it doesn't seem to be the case because from the code we can see that the array is only allocated during runtime.
Can I have some help understanding that?
Thanks in advance.
It's what's called a variable length array or for short a VLA, the size is determined at runtime but it's a one off, you cannot resize anymore. Some compilers even warn you about the usage of such arrays, as they are stored in the stack, which has a very limited size, it can potencially cause a stackoverflow.
Yes, that is correct. That's why these can be dangerous, the compiler won't know what is the size of the array at compile time, so if it's too large there is nothing it can do to avoid problems. For that reason C++ forbids VLA's.
Contrary to fixed size arrays, a variable length array size can be determined at runtime, but when its size is defined you can no longer change it, for that you have dynamic memory allocation (discussed ahead) if you are really set on having the exact size needed, and not one byte more.
Anyway, if you are expecting an outside value to set the size of the array, odds are that it is the size you need, if not, well there is nothing you can do, aside from the mentioned dynamic memory allocation, in any case it's better to have a little more wasted space than too little space.
There are three concepts I find relevant to the discussion:
Fixed size arrays, i.e.
int array[10]
:Their size defined at compile time, they cannot be resized and are useful if you already know the size they should have.
Variable length arrays, i.e.
int array[size]
,size
being a non constant variable:Their size is defined at runtime, but can only be set once, they are useful if the size of the array is dependant on external values, e.g. a user input or some value retrived from a file.
Dynamically allocated arrays: i.e.
int *array = malloc(sizeof *arr * size)
, size may or may not be a constant:These are used when your array will need to be resized, or if it's too large to store in the stack, which has limited size. You can change its size at any point in your code using
realloc
, which may simply resize the array or, as @Peter reminded, may simply allocate a new array and copy the contents of the old one over.