I am currently using the tsfresh
package for a project (predictive maintenance).
It is working really well and now I want to implement it live.
However, the issue is that I don't know how to store the feature engineering that has been applied to my original dataset in order to do the same feature engineering to the data that I am streaming (receiving live).
Do you have any idea if there is a parameter or a function that allows to store the feature engineering performed by tsfresh
?
(I am using the extract_relevant_features
function).
After searching through various post it turns out that the answer is that you can save your parameter into a dictionnary (see here).
This dictionnary can be can later be called with the function extract_features to extract only those parameters.