I'm about to do tensorflow serving.
pb file and variable folder are created. but No file was created under the variable folder.
like this
└── variables
├── variables.data-00000-of-00001
└── variables.index
After further experimentation, I found that the file only occurs when output is output to tf.Variable.
for example
1) z = tf.Variable(3,dtype=tf.float32)
2) z = tf.constant(3,dtype=tf.float32)
1) is created the file but 2) is not created file
z is output variable
signature_def_map= {
"serving_default": tf.saved_model.signature_def_utils.predict_signature_def(
inputs= {"egg": x, "bacon":y},
outputs= {"spam": z})
})
Is it right that I found out?
The above explanation is a test result as a simple example.
This is what I really want to do
sIdSorted = tf.gather(sId, indices[::-1])[0:5]
sess=tf.Session()
print sess.run(sIdSorted,feed_dict={userLat:37.12,userLon:127.2})
As a result of printing, it was output as follows. ['s7' 's1' 's2' 's3' 's4']
However, in this way, nothing is displayed in the variable folder.....
So I tried to output to tf.variable.
sIdSorted = tf.Variable(tf.gather(sId, indices[::-1])[0:5])
but This will output an error to the following.
initial_value must have a shape specified: Tensor("strided_slice_1:0", dtype=string)
so I tried it as follows.
sIdSorted = tf.Variable(tf.constant(tf.gather(sId, indices[::-1])[0:5],shape=[5]))
but This will output an error to the following.
List of Tensors when single Tensor expected
I need your help. Thank you for reading.
**tensorflow version :1.3.0 python 2.x
That is correct: only
tf.Variable
s result in variable files being exported. Those files contain the actual values of the variables. The graph structure itself is stored in thesaved_model.pb
. That's where your gather (and any other ops) are. You should be able to serve the model.