Is there a faster way to check if an axis aligned cube is inside a sphere than to test separately if the 8 corners are inside the Sphere?
I'm walking through an Octree checking if its cube-leafs are intersecting or enclosed within a Sphere. I found a method for intersections here: Cube sphere intersection test?
I was hoping to find a more efficient way to test for enclosement. What I need in the end is a test that returns one of three states:
- outside Sphere
- intersecting Sphere
- inside Sphere
The cubes are defined by two points, the sphere by its center-point and radius.
To find if the cube is entirely within the sphere, you can get away with testing only one vertex - the one furthest from the center of the sphere. You can determine which vertex to test by comparing the center points of the cube and sphere. For example, given a cube centered at
(cx,cy,cz)
and with an edge half-length ofl
, and a sphere at(sx,sy,sz)
with radiusr
, the point to test will beHowever, testing the corners of the cube against the sphere will not catch all cases of intersection - consider a cube from (-5,-5,-5) to (5,5,5) and a sphere at (0,0,6) with radius 2. The two volumes do intersect but no vertex is inside the sphere.
I'd go for a multi-pass approach:
For the purposes of walking an octree though, I would be tempted just treat the sphere as an axis-aligned bounding box and live with the small false-positive rate. I wouldn't be at all surprised to learn that this would be faster than getting the absolutely correct intersection results.