I've created and CNN and I am trying to figure out how to test a random image against it. I am utilizing Keras and Tensorflow. Lets assume I wanted to test the image found here: https://i.ytimg.com/vi/7I8OeQs7cQA/maxresdefault.jpg.
How would I save the model, load it then test this image against it? Here is some example code I found online that demonstrates what I mean: https://meta.stackexchange.com/questions/144665/hide-email-address-from-my-profile
Any help is much appreciated, thanks!
import os
import cv2
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from IPython.display import display, Image
from keras.models import Sequential, load_model
from keras.layers import Conv2D, Flatten, MaxPooling2D, Input
from keras.preprocessing.image import ImageDataGenerator
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import models, layers
X = []
y = []
from sklearn.model_selection import train_test_split
labels = os.listdir(r'C:/Users/zF1bo/Desktop/natural_images')
labels
for label in labels:
path = r'C:/Users/zF1bo/Desktop/natural_images/{}/'.format(label)
img_data = os.listdir(path)
for image in img_data:
a = cv2.imread( path + image)
a = cv2.resize(a, (64, 64))
X.append(np.array(a.astype('float32')) / 255)
y.append(label)
buckets = []
for i in y:
if i == 'airplane':
buckets.append(0)
elif i == 'car':
buckets.append(1)
elif i == 'cat':
buckets.append(2)
elif i == 'dog':
buckets.append(3)
elif i == 'flower':
buckets.append(4)
elif i == 'fruit':
buckets.append(5)
elif i == 'motorbike':
buckets.append(6)
elif i == 'person':
buckets.append(7)
y = buckets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, \
random_state = 0)
model = models.Sequential()
model.add(layers.Conv2D(filters=32, kernel_size=(5,5), activation='relu', input_shape=(64,64,3)))
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.Conv2D(filters=64, kernel_size=(3, 3), activation='relu'))
model.add(layers.MaxPool2D(pool_size=(2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(8, activation='softmax'))
model.compile(optimizer='adam', loss = 'sparse_categorical_crossentropy',metrics=['accuracy'])
y_train = np.array(y_train)
model.fit(X_train, y_train, batch_size=(256), epochs=25)
pred = model.predict(X_test)
diff = []
for i in pred:
diff.append(np.argmax(i))
from sklearn.metrics import accuracy_score
accuracy_score(diff,y_test)
Step 1: Save the model
Step 2: Load the model
Step 3: Download the image via requests library(answer is taken from: Downloading a picture via urllib and python):
Otherwise you can apply the same steps like in the first picture you posted. Do not forget to
expand_dims()