im trying to create a DqnAgent agent with a mask for valid/invalid actions, according to this post
, i should specify a splitter_fn
for the observation_and_action_constraint_splitter
arg. According to the tf_agents doc
, the splitter_fn
would be like:
def observation_and_action_constraint_splitter(observation):
return observation['network_input'], observation['constraint']
On my mind, i thought the variable observation
should be an array returned by env.step(action).observation
which is an array with shape (56,) in my case (it is a flattened array with the original shape (14,4), each row are 4 feature values for each choice, there are 5-14 choices, if the choices are invalid the corresponding features will be all 0), so i wrote my splitter_fn like this:
def observation_and_action_constrain_splitter(observation):
print(observation)
temp = observation.reshape(14,-1)
action_mask = (~(temp==0).all(axis=1)).astype(np.int32).ravel()
return observation, tf.convert_to_tensor(action_mask, dtype=tf.int32)
agent = DqnAgent(
tf_time_step_spec,
tf_action_spec,
q_network=q_net,
optimizer=optimizer,
td_errors_loss_fn=tf_common.element_wise_squared_loss,
train_step_counter=train_step_counter,
observation_and_action_constraint_splitter=observation_and_action_constrain_splitter
)
However, it returned the following error when running the above code cell:
BoundedTensorSpec(shape=(56,), dtype=tf.float32, name='observation', minimum=array(-3.4028235e+38, dtype=float32), maximum=array(3.4028235e+38, dtype=float32))
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-213-07450ea5ba21> in <module>()
13 td_errors_loss_fn=tf_common.element_wise_squared_loss,
14 train_step_counter=train_step_counter,
---> 15 observation_and_action_constraint_splitter=observation_and_action_constrain_splitter
16 )
17
4 frames
<ipython-input-212-dbfee6076511> in observation_and_action_constrain_splitter(observation)
1 def observation_and_action_constrain_splitter(observation):
2 print(observation)
----> 3 temp = observation.reshape(14,-1)
4 action_mask = (~(temp==0).all(axis=1)).astype(np.int32).ravel()
5 return observation, tf.convert_to_tensor(action_mask, dtype=tf.int32)
AttributeError: 'BoundedTensorSpec' object has no attribute 'reshape'
In call to configurable 'DqnAgent' (<class 'tf_agents.agents.dqn.dqn_agent.DqnAgent'>)
It turns out that print(observation)
returns a BoundedTensorSpec
object, not an array nor a tf.Tensor
object. How can i create my action mask from BoundedTensorSpec
, which doesnt even contain the array for the observation?
Thanks in advance!
PS: tf_agents version is 0.12.0
I was faced to the same problem. I solved it by passing the function
observation_and_action_constrain_splitter
to the policy instead ofDqnAgent
I hope this helped you.