Time complexity of Miller Rabin Primality Test

1.1k Views Asked by At

What would be the time complexity be for this algorithm below?

using ll = long long;
using u64 = ll;
using u128 = ll;

u64 binpower(u64 base, u64 e, u64 mod) {
    u64 result = 1;
    base %= mod;
    while (e) {
        if (e & 1)
            result = (u128)result * base % mod;
        base = (u128)base * base % mod;
        e >>= 1;
    }
    return result;
}

bool check_composite(u64 n, u64 a, u64 d, int s) {
    u64 x = binpower(a, d, n);
    if (x == 1 || x == n - 1)
        return false;
    for (int r = 1; r < s; r++) {
        x = (u128)x * x % n;
        if (x == n - 1)
            return false;
    }
    return true;
};

bool MillerRabin(u64 n) { // returns true if n is prime, else returns false.
    if (n < 2)
        return false;

    int r = 0;
    u64 d = n - 1;
    while ((d & 1) == 0) {
        d >>= 1;
        r++;
    }

    for (int a : {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37}) {
        if (n == a)
            return true;
        if (check_composite(n, a, d, r))
            return false;
    }
    return true;
}

Recently I have gotten interested in primality tests, and have wondered what would the time complexity be for the deterministic version of Miller-Rabin. Code directly taken by https://cp-algorithms.com/

I would think that the time complexity would be at least O(log(d)) because the binpower function is O(log(e)). Also the check_composite function runs in O(s). But the thing that I am having trouble with is the total time complexity.

0

There are 0 best solutions below