There is a question about 2D heat conduction with heat source in the center.
and its image is like this.
Given: The 2cm*2cm heat source could be considered as one node. The temperature of all the nodes at t=0s is know, and the generation heat flux q_generation is also knowed.
None of the numbers in the question are important.
Find: the temperature distribution of the 2D plane changing with time.
I have known that the numerical method of 2D(node by node) without heat source already, but if there is a heat source which is generating heat, I don't know how to solve this problem. where should I start to calculate? I make a MATLAB code, and get the apparently wrong answer.
format longG;
clc;clear;
%% Define Parameters and Initial Conditions
Lx = 0.3; % Length of the region
Ly = 0.2; % Width of the region
Nx = 31; % Number of points in each row/column
Ny = 21; % Number of points in each column/row
Tmax = 1; % Total time
dt = 10^(-2); % Time step
num_time_steps = Tmax/dt; % Total number of time steps
k = 14.4; % Thermal conductivity
h = 100; % Heat transfer coefficient
alpha = 0.387*10^(-5); % Thermal diffusivity
Cp = 461; % Specific heat capacity
den = 7817; % Density
q_gen = 50*10^(-6)*0.01*1; % Heat source (50 watts per cubic centimeter)
num_i = 0;
num_j = 2;
dx = Lx / (Nx-1);
dy = Ly / (Ny-1);
%% Create an array to store temperature distribution at all time points
T = zeros(Ny, Nx, num_time_steps);
% Initial temperature distribution at t=0 (k=1)
T(:, :, 1) = 25*ones(Ny, Nx);
%% Time Stepping
% Loop to calculate temperature distribution at each time step
for t = 2:num_time_steps
for i = (Ny+1)/2:Ny % Horizontal from 11-21
for j = (Nx+1)/2:Nx % Vertical from 16-31
% Use the previous time step array to compute the next time step array
if i ~= 11
num_j = 2;
end
if i == (Ny+1)/2 && j == (Nx+1)/2
% Calculate temperature at the corner
T(i, j, t) = ((T(i-1, j, t-1)-2*T(i,j,t-1)+T(i+1,j,t-1))/dx^2 + (T(i, j+1, t-1)-2*T(i,j,t-1)+T(i,j-1,t-1))/dy^2 + q_gen/k)*alpha*dt+T(i,j,t-1);
elseif i == Ny && j == Nx % Corner
T(i, j, t) = ((0.5*k/dy^2+0.5*k/dx^2+h/(dy*2)+h/(dx*2))*-T(i, j, t-1)+...
(0.5*k/dy^2*T(i,j-1,t-1)+0.5*k/dx^2*T(i-1,j,t-1)+h/(dy*2)*25+...
h/(dx*2)*25))*dt+T(i,j,t-1);
T(i-num_i,j,t)=T(i,j,t);
T(i,j-num_j,t)=T(i,j,t);
T(i-num_i,j-num_j,t)=T(i,j,t);
message = sprintf('Corner has been processed, %d, %d', i, j);
disp(message);
elseif i == Ny && j ~= Nx % Rightmost column
T(i, j, t) = ((alpha/dx^2+0.5*alpha/dy^2+0.5*alpha/dy^2+h/(dx*den*Cp))*-T(i, j, t-1)+...
(alpha/dx^2*T(i-1,j,t-1)+0.5*alpha/dy^2*T(i,j+1,t-1)+0.5*alpha/dy^2*T(i,j-1,t-1)+...
h/(dx*den*Cp)*25))*dt+T(i,j,t-1);
T(i,j-num_j,t)=T(i,j,t);
message = sprintf('Right column has been processed, %d, %d', i, j);
disp(message);
elseif j == Nx && i ~= Ny % Bottommost row
T(i, j, t) = ((alpha/dx^2+alpha/dy^2+h/(dy*den*Cp))*-T(i, j, t-1)+...
(0.5*alpha/dx^2*T(i-1,j,t-1)+0.5*alpha/dx^2*T(i+1,j,t-1)+alpha/dy^2*T(i,j-1,t-1)+...
h/(dy*den*Cp)*25))*dt+T(i,j,t-1);
T(i-num_i, j, t) = T(i,j,t);
message = sprintf('Bottom row has been processed, %d, %d', i, j);
disp(message);
else
T(i, j, t) = ((T(i-1, j, t-1)-2*T(i,j,t-1)+T(i+1,j,t-1))/dx^2 + (T(i, j+1, t-1)-2*T(i,j,t-1)+T(i,j-1,t-1))/dy^2)*alpha*dt+T(i,j,t-1); % Update temperature with arbitrary values
if i == 11
T(i,j-num_j,t)=T(i, j, t);
num_j = num_j + 2;
else
T(i-num_i,j,t)=T(i, j, t);
T(i-num_i,j-num_j,t)=T(i,j,t);
T(i,j-num_j,t)=T(i,j,t);
num_j = num_j + 2;
end
message = sprintf('Inner region has been processed, %d, %d', i, j);
disp(message);
end
end % Calculation for each row
num_i = num_i + 2;
end % Calculation for one time step
% Plot Temperature Distribution
% Create a figure window
figure(1);
imagesc(T(:,:,t));
colorbar;
title(['Time = ' num2str(t*dt)]);
xlabel('X');
ylabel('Y');
drawnow;
num_i = 0;
num_j = 2;
end