I have attempted to adjust the qutip Wigner function, for it to process two mode states, specifically for the iterative method.
However the size of the array my output gives out is too big and I am unsure of why? That is when I try and calculate the Wigner logarithmic negativity using it, the integrals come out as arrays rather than singular values.
The code and description of what it is meant to do is below:
`import numpy as np
from scipy import (zeros, array, arange, exp, real, conj, pi,
copy, sqrt, meshgrid, size, polyval, fliplr, conjugate,
cos, sin)
import scipy.sparse as sp
import scipy.fftpack as ft
import scipy.linalg as la
from scipy.special import genlaguerre
from scipy.special import binom
from scipy.special import sph_harm
from qutip.qobj import Qobj, isket, isoper
from qutip.states import ket2dm
from qutip.parallel import parfor
from qutip.utilities import clebsch
from scipy.special import factorial
from qutip.cy.sparse_utils import _csr_get_diag
from qutip import *
def wigner2(psi, xvec1, yvec1, xvec2, yvec2, method='iterative', g=np.sqrt(2)):
"""Wigner function for a state vector or density matrix at points
`xvec1 + i * yvec1` `xvec2 + i * yvec2`
Parameters
state : qobj A state vector or density matrix.
xvec1 : array_like x-coordinates at which to calculate the Wigner function.
yvec1 : array_like y-coordinates at which to calculate the Wigner function.
xvec2 : array_like x-coordinates at which to calculate the Wigner function.
yvec2 : array_like y-coordinates at which to calculate the Wigner function.
g : float
Scaling factor for a = 0.5 * g * (x + iy)
, default g = sqrt(2)
.
method : string {'iterative'}
Select method 'iterative', where 'iterative' uses
an iterative method to evaluate the Wigner functions for density
matrices :math:|m><n|
. The 'iterative' method is default, and
in general recommended, but the 'laguerre' method is more efficient for
very sparse density matrices (e.g., superpositions of Fock states in a
large Hilbert space). The 'fft' method is the preferred method for
dealing with density matrices that have a large number of excitations
(>~50).
Returns
W : array Values representing the Wigner function calculated over the specified range [xvec1,yvec1] and [xvec2,yvec2] """
if not (psi.type == 'ket' or psi.type == 'oper' or psi.type == 'bra'):
raise TypeError('Input state is not a valid operator.')
if psi.type == 'ket' or psi.type == 'bra':
rho = ket2dm(psi) #always use density matrix
else:
rho = psi
if method == 'iterative':
return _wigner2_iterative(rho, xvec1, yvec1, xvec2, yvec2, g)
else:
raise TypeError(
"method must be 'iterative'")
def _wigner2_iterative(rho, xvec1, yvec1, xvec2, yvec2, g=np.sqrt(2)):
"""Using an iterative method to evaluate the wigner functions for the Fock
state :math:|mp><nq|
The Wigner function is calculated as
:math:W = \sum_{mpnq} \\rho_{mpnq} W_{mpnq}
where :math:W_{mpnq}
is the Wigner
function for the density matrix :math:|mp><nq|
. In this implementation, for each row m*p, Wlist contains the Wigner functions
Wlist = [0, ..., W_mpmp, ..., W_mpnq]. As soon as one W_mpnq Wigner function is
calculated, the corresponding contribution is added to the total Wigner
function, weighted by the corresponding element in the density matrix :math:rho_{mpnq}
."""
M1 = np.prod(ptrace(rho, 0).shape[0])
M2 = np.prod(ptrace(rho, 1).shape[0])
M = np.prod(rho.shape[0])
X1, Y1, X2, Y2 = np.meshgrid(xvec1, yvec1, xvec2, yvec2)
A1 = 0.5 * g * (X1 + 1.0j * Y1 + 0 * X2 + 0 * Y2)
A2 = 0.5 * g * (0 * X1 + 0 * Y1 + X2 + 1.0j * Y2)
Wlist1 = array([zeros(np.shape(A1), dtype=complex) for k in range(M)])
Wlist2 = array([zeros(np.shape(A2), dtype=complex) for k in range(M)])
W = real(rho[0, 0]) * real(Wlist1[0] * Wlist2[0])
for m in range(0,M1):
if m==0:
Wlist1[0] = exp(-2.0 * abs(A1) ** 2) / (pi)
else:
Wlist1[m] = ((2.0 * A1 * Wlist1[m - 1]) / sqrt(m))
for n in range(0, M2):
if n==0:
Wlist2[0] = exp(-2.0 * abs(A2) ** 2) / (pi)
else:
Wlist2[n] = ((2.0 * A2 * Wlist2[n - 1]) / sqrt(n))
if m != 0 and n != 0:
W += 2 * real(rho[0, m * M2 + n] * Wlist1[m] * Wlist2[n])
for p in range(0, M1):
temp1 = copy(Wlist1[m])
temp2 = copy(Wlist2[n])
if p==0:
Wlist1[p] = exp(-2.0 * abs(A1) ** 2) / (pi)
else:
Wlist1[p] = ((2.0 * conj(A1) * temp1 -sqrt(p) * Wlist1[p-1]) / sqrt(p))
for q in range(0, M2):
if q==0:
Wlist2[q] = exp(-2.0 * abs(A2) ** 2) / (pi)
else:
Wlist2[q] = ((2.0 * conj(A2) * temp2 - sqrt(q) * Wlist1[q - 1]) / sqrt(q))
W += 2 * real(rho[p * M2 + q, p * M2 + q] * Wlist1[p] * Wlist2[q])
if p != 0 and q !=0:
for k in range(p + 1, M1):
temp3 = (2 * A1 * Wlist1[k-1] - sqrt(k) * temp1) / sqrt(k)
temp1 = copy(Wlist1[k])
Wlist1[k] = temp3
for l in range(q +1, M2):
temp4 = (2 * A2 * Wlist2[l-1] - sqrt(l) * temp2) / sqrt(l)
temp2 = copy(Wlist2[l])
Wlist2[l] = temp4
W += 2 * real(rho[p * M2 + q, k *M2 +l] * Wlist1[k] * Wlist2[l])
return 0.5 * W * g **2'
Same problem for me, you can try this code.