TWS API - store company snapshot and financial statements

515 Views Asked by At

My goal is to use a list of tickers together with the TWS API to extract parts of the company snapshot (reqFundamentalData() -> "ReportSnapshot") and the financial statements (reqFundamentalData() -> "ReportsFinStatements") of these tickers, convert into a dataframe and store it as a parquet file.
I tried to merge solutions provided:

  1. use a list of tickers TWS API to download stock fundamental data runs only the first data entry and ignores the others. Whow to solve this?
  2. store XML as dataframe Converting XML to Pandas
  3. store data Save data from TWS API to csv file

Code:

from datetime import datetime
from bs4 import BeautifulSoup as bs
import pandas as pd

from ibapi.client import EClient
from ibapi.contract import Contract
from ibapi.wrapper import EWrapper
import logging

import random
import pathlib
import time
from datetime import date
import datetime
from pathlib import Path

class TestApp(EWrapper, EClient):
def __init__(self, addr, port, client_id):
    EWrapper.__init__(self)   # new - book
    EClient.__init__(self, self)

    self.firstReqId = 8001
    self.contracts = {}  # keep in dict so you can lookup
    self.contNumber = self.firstReqId

    # add dataframes to store the result
    self.df_company_info = pd.DataFrame(data=None, index=None, columns=None)
    self.df_fin_stmts = pd.DataFrame(data=None, index=None, columns=None)

def addContracts(self, cont):
    self.contracts[self.contNumber] = cont  # add to dict using 8001 first time
    self.contNumber += 1  # next id will be 8002 etc.

def nextValidId(self, orderId: int):
    # now you are connected, ask for data, no need for sleeps
    # this isn't the only way to know the api is started but it's what IB recommends
    self.contNumber = self.firstReqId   # start with first reqId
    self.getNextData()

def error(self, reqId, errorCode, errorString):
    print("Error: ", reqId, "", errorCode, "", errorString)

    # if there was an error in one of your requests, just contimue with next id
    if reqId > 0 and self.contracts.get(self.contNumber):
        # err in reqFundametalData based on reqid existing in map
        print('err in', self.contracts[reqId].symbol)
        self.getNextData() # try next one

def fundamentalData(self, reqId, fundamental_data):
    self.fundamentalData = fundamental_data
    try:
        if self.fundamentalData is not None:
            # convert XML to dictionary entry
            dict_company_info = self.CompanyInfoXMLtoDict(self.fundamentalData)
            # add dict entry to dataframe
            df_add_row = pd.DataFrame([dict_company_info])
            self.df_company_info = self.df_company_info.append(df_add_row, ignore_index=True)
    except KeyError:
        print('Ticker: ' + str(self.contNumber) + ' could not get company_info')
    except TypeError:
        print('Ticker: ' + str(self.contNumber) + ' could not get company_info')
    except ValueError:
        print('Ticker: ' + str(self.contNumber) + ' could not get company_info')
    except IndexError:
        print('Ticker: ' + str(self.contNumber) + ' could not get company_info')

    self.getNextData()

def getNextData(self):
    if self.contracts.get(self.contNumber):     # means a contract exists
        # so req data
        self.reqFundamentalData(self.contNumber, self.contracts[self.contNumber], "ReportSnapshot", [])
        self.contNumber += 1    # now get ready for next request
    else:   # means no more sequentially numbered contracts
        print('done')
        self.disconnect()   # just exit


def CompanyInfoXMLtoDict(self, fundamentals):
    soup = bs(fundamentals, 'xml')
    
    df_company_info = pd.DataFrame(data=None, index=None, columns=None)
    ticker = ''
    longName = ''
    fullTimeEmployees = 0

    # search for a tag e.g. </IssueID>
    for issues in soup.find_all('IssueID'):
        # within this tag -> search of unique ID e.g. IssueID type=...
        if issues.get('Type') == "Ticker":
            ticker = issues.get_text()
            break

    for coID_i in soup.find_all('CoID'):
        if coID_i.get('Type') == "CompanyName":
            longName = coID_i.get_text()
            break

    for employees_i in soup.find_all('Employees'):
        fullTimeEmployees = employees_i.get_text()
        break

    # create result entry row
    if ticker is not None and ticker != '':
        new_row_dict = {'ticker': ticker, 'name': longName,
                        'num_employees': fullTimeEmployees}
    else:
        new_row_dict = {}

    return new_row_dict

def FinStmtsXMLtoDF(self, fundamentals, ticker, stmts_type):
    today = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    today_date = date.today().strftime("%Y-%m-%d")
   
    if stmts_type == 'annual':
        period_type = 'Annual'
    else:
        period_type = 'Interim'

    soup = bs(fundamentals, 'xml')

    # build dict
    stmts_terms = {}
    for terms in soup.find_all("mapItem"):
        # add entry to dict -> dict for maping of code to description
        stmts_terms[terms.get('coaItem')] = terms.get_text()

    bal_l = []
    inc_l = []
    cas_l = []
    for period in soup.find_all('FiscalPeriod'):
        # quarterly vs. annually
        if period.get('Type') == period_type:
            for statement in period.find_all('Statement'):
                if statement.find('UpdateType').get('Code') != 'CLA':
                    dic = {}

                    stmts_type = statement.get('Type')
                    # source_date = statement.find('Source').get('Date')
                    statement_date = statement.find('StatementDate').text
                    # dic['date'] = source_date
                    dic['rep_date'] = statement_date

                    for item in statement.find_all('lineItem'):
                        # dic[item.get('coaCode')] = item.text
                        dic[stmts_terms.get(item.get('coaCode'), 'DEFAULT')] = item.text

                    if stmts_type == 'BAL':
                        bal_l.append(dic)
                        # print(stmts_type, date, dic)
                    elif stmts_type == 'INC':
                        inc_l.append(dic)
                    elif stmts_type == 'CAS':
                        cas_l.append(dic)

    df_balance_sheet = pd.DataFrame(bal_l).sort_values('rep_date')
    df_income_statement = pd.DataFrame(inc_l).sort_values('rep_date')
    df_cash_flow = pd.DataFrame(cas_l).sort_values('rep_date')

    # merge all stmts for same rep_date
    df_fin_stmts = pd.DataFrame(data=None, index=None, columns=None)
    df_fin_stmts = df_balance_sheet.merge(df_income_statement, how='left',
                           left_on=['rep_date'],
                           right_on=['rep_date'])
    df_fin_stmts = df_fin_stmts.merge(df_cash_flow, how='left',
                                         left_on=['rep_date'],
                                         right_on=['rep_date'])

    df_fin_stmts.insert(loc=0, column='ticker', value=ticker)
    df_fin_stmts.insert(loc=1, column='date_updated', value=today_date)

    return df_fin_stmts

def main():
    # ----- config
    project_data_folder = '/home/data/'
    project_data_folder = Path(project_data_folder)
    # ticker are stored in a csv file
    csv_master_ticker = Path('home/data/ticker/ticker-list.csv')

    # load list of tickers
    df = pd.read_csv(csv_master_ticker)
    list_master_ticker = df['ticker'].tolist()

    fusion_company_info = pd.DataFrame(data=None, index=None, columns=None)
    fusion_fin_stmts = pd.DataFrame(data=None, index=None, columns=None)
    fusion_q_fin_stmts = pd.DataFrame(data=None, index=None, columns=None)

    client = TestApp('127.0.0.1', 7496, 0)
    
    for ticker in list_master_ticker:
  
       # remove additional postfix for exchange e.g. XYZ.F -> XYZ
       ticker_clean = ticker.rstrip('.')

       contract = Contract()
       contract.symbol = ticker_clean
       contract.secType = 'STK'
       contract.exchange = "SMART"
       contract.currency = 'USD'

       client.addContracts(contract)

    client.connect('127.0.0.1', 7496, 0)
    client.run()

    if fusion_company_info.empty:
        fusion_company_info = client.df_company_info
    else:
        fusion_company_info = pd.concat([fusion_company_info, client.df_company_info])

            tws_company_info_file_name = 'tws_company_info.parquet'
        file_name = project_data_folder / tws_company_info_file_name
        try:
            if fusion_company_info is not None:
                if not fusion_company_info.empty:
                    fusion_company_info.to_parquet(file_name, engine='pyarrow')

        #    financial statements - annual
        tws_fin_stmts_file_name = 'tws_fin_stmts.parquet'
        file_name = project_data_folder / tws_fin_stmts_file_name
        try:
            if fusion_fin_stmts is not None:
                if not fusion_fin_stmts.empty:
                    fusion_fin_stmts.to_parquet(file_name, engine='pyarrow')

    

I get an error message

Traceback (most recent call last):
      File "...\ibapi\client.py", line 239, in run
        self.decoder.interpret(fields)
      File "...\ibapi\decoder.py", line 1278, in interpret
        self.interpretWithSignature(fields, handleInfo)
      File "...\ibapi\decoder.py", line 1259, in interpretWithSignature
        method(*args)
    TypeError: 'str' object is not callable
    python-BaseException

Can someone help me with this error message? If I remove the for loop and run it only for a single ticker e.g.

client.contracts = {}
contract = Contract()
contract.symbol = 'AMD'
contract.secType = 'STK'
contract.currency = 'USD'
contract.exchange = "SMART"
client.addContracts(contract)
client.connect('127.0.0.1', 7496, 0)
client.run()

I don't get a error message and the dataframe self.company_info get's populated with the correct data of AMD.

General questions:

  1. Is it possible to get via reqFundamentalData() not only the company info "ReportSnapshot", but also the financial statements "ReportsFinStatements" (df_fin_stmts and the function "FinStmtsXMLtoDF") in one request/run ?

  2. I new to python and would expect functions are only executed, if the functions is called within the code, but somehow with the the TWS API (socket, reqID) it seems to work different and it's not fully clear to me when which funciton is called after one and another. e.g. how do I know that by executing reqFundamentalData() the function fundamentalData() is called. Or e.g. nextValidID() is somehow triggered, but not explicit called within the program. Is there a good tutorial to introduce the process of what functions are called in which order?

Thank you very much

0

There are 0 best solutions below