This code:
input_tensor = Input(shape=(input_width, input_height, 3))
ResNet50 = ResNet50(include_top=False, weights='imagenet',input_tensor=input_tensor)
top_model = Sequential()
top_model.add(Flatten(input_shape=ResNet50.output_shape[1:]))
top_model.add(Dense(8, activation='softmax'))
model = Model(input=ResNet50.input, output=top_model(ResNet50.output))
model.compile(loss='categorical_crossentropy',
optimizer=optimizers.SGD(lr=1e-3, momentum=0.9),
metrics=['accuracy'])
causes TypeError
:
TypeError Traceback (most recent call last)
<ipython-input-41-07033765de09> in <module>()
58 top_model.add(Flatten(input_shape=ResNet50.output_shape[1:]))
59 top_model.add(Dense(8, activation='softmax'))
---> 60 model = Model(input=ResNet50.input, output=top_model(ResNet50.output))
61 model.compile(loss='categorical_crossentropy',
62 optimizer=optimizers.SGD(lr=1e-3, momentum=0.9),
2 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/generic_utils.py in validate_kwargs(kwargs, allowed_kwargs, error_message)
776 for kwarg in kwargs:
777 if kwarg not in allowed_kwargs:
--> 778 raise TypeError(error_message, kwarg)
779
780
TypeError: ('Keyword argument not understood:', 'input')
How should I fix it?
- tensorflow version: 2.3.0
- keras version: 2.4.3
As Dr. Snoopy mentioned in the comment the parameters are called 'inputs' and 'outputs' with the 's':