I have been trying to run inference from python using deepstream and gstreamer. The problem I have is to get my simple video stream and get inference done. The video I have is made from jpeg using ffmeg:
ffmpeg -framerate 30 -pattern_type glob -i './images/*.jpg' -c:v libx264 -pix_fmt yuv420p output_video.mp4
The problem I have lies in the pipeline does start.
vMMLiteOpen : Block : BlockType = 261 NVMEDIA: Reading vendor.tegra.display-size : status: 6 NvMMLiteBlockCreate : Block : BlockType = 261 Error: Internal data stream error.
The resulting file is below, and also attached as reference.
The mediainfo of the file is: General Complete name : output_video.mp4 Format : MPEG-4 Format profile : Base Media Codec ID : isom (isom/iso2/avc1/mp41) File size : 68.1 MiB Duration : 6 min 44 s Overall bit rate : 1 411 kb/s Writing application : Lavf58.29.100
Video ID : 1 Format : AVC Format/Info : Advanced Video Codec Format profile : [email protected] Format settings : CABAC / 4 Ref Frames Format settings, CABAC : Yes Format settings, Reference frames : 4 frames Codec ID : avc1 Codec ID/Info : Advanced Video Coding Duration : 6 min 44 s Bit rate : 1 409 kb/s Width : 1 280 pixels Height : 720 pixels Display aspect ratio : 16:9 Frame rate mode : Constant Frame rate : 30.000 FPS Color space : YUV Chroma subsampling : 4:2:0 Bit depth : 8 bits Scan type : Progressive Bits/(Pixel*Frame) : 0.051 Stream size : 68.0 MiB (100%) Writing library : x264 core 155 r2917 0a84d98 Encoding settings : cabac=1 / ref=3 / deblock=1:0:0 / analyse=0x3:0x113 / me=hex / subme=7 / psy=1 / psy_rd=1.00:0.00 / mixed_ref=1 / me_range=16 / chroma_me=1 / trellis=1 / 8x8dct=1 / cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=12 / lookahead_threads=2 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 / bluray_compat=0 / constrained_intra=0 / bframes=3 / b_pyramid=2 / b_adapt=1 / b_bias=0 / direct=1 / weightb=1 / open_gop=0 / weightp=2 / keyint=250 / keyint_min=25 / scenecut=40 / intra_refresh=0 / rc_lookahead=40 / rc=crf / mbtree=1 / crf=23.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / ip_ratio=1.40 / aq=1:1.00 Codec configuration box : avcC
The python code I use for inference is the deepstream sample test1 (deepstream-test1.py) and modified the pipeline to fit my needs (so I thought):
def main():
# Create the main loop
loop = GObject.MainLoop()
# Create a GStreamer pipeline
pipeline = Gst.Pipeline.new("avi-mjpeg-player")
# Create pipeline elements
source = Gst.ElementFactory.make("filesrc", "source")
if not source:
sys.stderr.write(" Unable to create Source \n")
decoder = Gst.ElementFactory.make("decodebin", "decode")
if not decoder:
sys.stderr.write(" Unable to create decode \n")
convert = Gst.ElementFactory.make("nvvideoconvert", "convertor")
if not convert:
sys.stderr.write(" Unable to create nvvidconv \n")
# Create nvstreammux instance to form batches from one or more sources.
streammux = Gst.ElementFactory.make("nvstreammux", "Stream-muxer")
if not streammux:
sys.stderr.write(" Unable to create NvStreamMux \n")
infer = Gst.ElementFactory.make("nvinfer", "primary-inference")
if not infer:
sys.stderr.write(" Unable to create inference \n")
nvosd = Gst.ElementFactory.make("nvdsosd", "onscreendisplay")
if not nvosd:
sys.stderr.write(" Unable to create nvosd \n")
#convert = Gst.ElementFactory.make("videoconvert", "convert")
#if not convert:
# sys.stderr.write(" Unable to create convert \n")
sink = Gst.ElementFactory.make("nv3dsink", "nv3d-sink")
if not sink:
sys.stderr.write(" Unable to create sink \n")
# Set the input AVI file path
source.set_property("location", "/home/aiadmin/output_video.mp4")
streammux.set_property('width', 1280)
streammux.set_property('height', 720)
streammux.set_property('batched-push-timeout', 4000000)
streammux.set_property('batch-size', 1)
# Set the infer configuration file
infer.set_property("config-file-path", "dstest1_pgie_config.txt")
# Build the pipeline
pipeline.add(source)
pipeline.add(decoder)
pipeline.add(convert)
pipeline.add(streammux)
pipeline.add(infer)
pipeline.add(nvosd)
pipeline.add(sink)
source.link(decoder)
decoder.link(convert)
#Create the link to sink
sinkpad = streammux.get_request_pad("sink_0")
if not sinkpad:
sys.stderr.write(" Unable to get the sink pad of streammux \n")
srcpad = convert.get_static_pad("src")
if not srcpad:
sys.stderr.write(" Unable to get source pad of decoder \n")
srcpad.link(sinkpad)
streammux.link(infer)
infer.link(nvosd)
nvosd.link(sink)
# Set up the bus to watch for messages
bus = pipeline.get_bus()
bus.add_signal_watch()
bus.connect("message", on_message, loop)
# Lets add probe to get informed of the meta data generated, we add probe to
# the sink pad of the osd element, since by that time, the buffer would have
# had got all the metadata.
osdsinkpad = nvosd.get_static_pad("sink")
if not osdsinkpad:
sys.stderr.write(" Unable to get sink pad of nvosd \n")
osdsinkpad.add_probe(Gst.PadProbeType.BUFFER, osd_sink_pad_buffer_probe, 0)
# Set the pipeline to playing state
pipeline.set_state(Gst.State.PLAYING)
try:
loop.run()
except KeyboardInterrupt:
pass
finally:
# Clean up
pipeline.set_state(Gst.State.NULL)
Any Ideas on modifying the pipelien to run the videofile through inference would be nice. also to run 3 identical pipelines to benchmark it with three streams.
thanks for any help on the gst-pipline making...