I have to assign a label to categorical data. Let us consider the iris example:
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
iris = load_iris()
print "targets: ", np.unique(iris.target)
print "targets: ", iris.target.shape
print "target_names: ", np.unique(iris.target_names)
print "target_names: ", iris.target_names.shape
It will be printed:
targets: [0 1 2] targets: (150L,) target_names: ['setosa' 'versicolor' 'virginica'] target_names: (3L,)
In order to produce the desired labels I use pandas.Categorical.from_codes:
print pd.Categorical.from_codes(iris.target, iris.target_names)
[setosa, setosa, setosa, setosa, setosa, ..., virginica, virginica, virginica, virginica, virginica] Length: 150 Categories (3, object): [setosa, versicolor, virginica]
Let us try it on a different example:
# I define new targets
target = np.array([123,123,54,123,123,54,2,54,2])
target = np.array([1,1,3,1,1,3,2,3,2])
target_names = np.array(['paglia','gioele','papa'])
#---
print "targets: ", np.unique(target)
print "targets: ", target.shape
print "target_names: ", np.unique(target_names)
print "target_names: ", target_names.shape
If I try again to transform the categorical values in labels:
print pd.Categorical.from_codes(target, target_names)
I get the error message:
C:\Users\ianni\Anaconda2\lib\site-packages\pandas\core\categorical.pyc in from_codes(cls, codes, categories, ordered) 459 460 if len(codes) and (codes.max() >= len(categories) or codes.min() < -1): --> 461 raise ValueError("codes need to be between -1 and " 462 "len(categories)-1") 463
ValueError: codes need to be between -1 and len(categories)-1
Do you know why?
If you will take a closer look at the error traceback:
you'll see that the following condition is met:
in your case:
In other words
pd.Categorical.from_codes()
expectscodes
as sequential numbers starting from0
up tolen(categories) - 1
Workaround:
helper dicts:
building categorical Series:
reverse mapping: