Suppose that I have the following loop which computes rolling forecasts with model re-fitting using ARMA models.
library(forecast)
set.seed(1)
prices=rnorm(1963)
USDlogreturns=diff(log(prices))
h <- 1
train <- window(USDlogreturns, end=1162, frequency=1)
test <- window(USDlogreturns, start=1163, frequency=1)
n <- length(test) - h + 1
fc1 <- ts(numeric(n), start=1163+1, freq=1)
fc2 <- ts(numeric(n), start=1163+1, freq=1)
fc3 <- ts(numeric(n), start=1163+1, freq=1)
fc4 <- ts(numeric(n), start=1163+1, freq=1)
fit1 <- Arima(train, order=c(0,0,0), include.mean=TRUE, method="ML")
fit2 <- Arima(train, order=c(0,0,1), include.mean=TRUE, method="ML")
fit3 <- Arima(train, order=c(1,0,0), include.mean=TRUE, method="ML")
fit4 <- Arima(train, order=c(1,0,1), include.mean=TRUE, method="ML")
for(i in 1:n){
x <- window(USDlogreturns, end=1162 + i, frequency=100)
refit1 <- Arima(x, model=fit1, include.mean=TRUE, method="ML")
refit2 <- Arima(x, model=fit2, include.mean=TRUE, method="ML")
refit3 <- Arima(x, model=fit3, include.mean=TRUE, method="ML")
refit4 <- Arima(x, model=fit4, include.mean=TRUE, method="ML")
fc1[i] <- forecast(refit1, h=h)$mean[h]
fc2[i] <- forecast(refit2, h=h)$mean[h]
fc3[i] <- forecast(refit3, h=h)$mean[h]
fc4[i] <- forecast(refit4, h=h)$mean[h]
}
As I run it in R, I get 50 warning messages which run:
"In window.default(USDlogreturns, end = 1162 + i, frequency = 100) :'frequency' not changed"
So my problem is that I am struggling to understand how to tell R to refit my four ARMA models every 100 days for 8 times through the window function.
Any tips for a rookie?
I managed to solve my problem myself. The use of the "pos" command provides a much more flexible and elegant solution by the way.