i am fairly new to R and Python. I like to perform multiple regression using Akaike Information Criterion for variable selection and to evaluate my criterion.
I have written some code to select my variables using the F Statistic P value. The dataset consists of information of housing prices
i am planning to regress the variables (i.e., xvar) onto resale price (i.e., yvar).
instead of using minpv to select my variables, i would like to use the AIC to select the variables.
Would also like to evaluate the resale price criterion using AIC instead of fpv
# Multiple Regression Variable Selection
def mr(selection=False):
    import os
    os.chdir(r'C:\Users\Path')
    import pandas as pd
    h=pd.read_csv('Dataset.csv',index_col=0)
    #print(h.head(0)) # dataset's variable names
    yvar='resale_price'
    modeleq = yvar + ' ~'
    for xvar in ( # Insert new 'x variable' into a row, ending with ','
        'storey_range_lower',
        'storey_range_lower_rt',
        'storey_range_lower_sq',
        'storey_range_upper',
        'storey_range_upper_rt',
        'storey_range_upper_sq',
        'floor_area_sqm',
        'floor_area_sqm_rt',
        'floor_area_sqm_sq',
        'lease_commence_year',
        'lease_commence_year_rt',
        'lease_commence_year_sq',
        'transaction_month',
        'transaction_month_rt',
        'transaction_month_sq',
        'town',
        'flat_model',
        'flat_type',
        'no_of_rooms',
        'block_number',
        'block_number_rt',
        'block_number_sq',
        'postal_code',
        'postal_code_rt',
        'postal_code_sq',
        'postal_code_2digit',
        'postal_code_2digit_rt',
        'postal_code_2digit_sq',
        ):
        if modeleq[-1] == '~':
            modeleq = modeleq + ' ' + xvar
        else:
            modeleq = modeleq + ' + ' + xvar
    #import matplotlib.pyplot as pl
    #%matplotlib inline
    #import numpy as np
    import statsmodels.api as sm
    from statsmodels.formula.api import ols
    bmodeleq=modeleq
    if selection :
        print('Variable Selection using p-value & PR(>F):')
        minfpv = 1.0
        while True :
            #Specify C() for Categorical, else could be interpreted as numeric:
            #hout=ols('resale_price ~ floor_area_sqm + C(flat_type)', data=h).fit()
            hout=ols(modeleq, data=h).fit()
            if modeleq.find(' + ') == -1 :
                # 1 xvar left
                break
            #print(dir(hout)) gives all the attributes of .fit(), e.g. .fvalue & .f_pvalue
            fpv=hout.f_pvalue
            if fpv < minfpv :
                minfpv=fpv
                bmodeleq=modeleq
            print('\nF-statistic =',hout.fvalue,'       PR(>F) =',fpv)
            prf = sm.stats.anova_lm(hout, typ=3)['PR(>F)']
            maxp=max(prf[1:])
            #print('\n',dict(prf))
            xdrop = prf[maxp==prf].axes[0][0] # 1st element of row-label .axes[0]
            #if xdrop.find('Intercept') != -1 :
            #    break
            # xdrop removed from model equation:
            if (modeleq.find('~ ' + xdrop + ' + ') != -1): 
                modeleq = modeleq.replace('~ ' + xdrop + ' + ','~ ') 
            elif (modeleq.find('+ ' + xdrop + ' + ') != -1): 
                modeleq = modeleq.replace('+ ' + xdrop + ' + ','+ ')
            else:
                modeleq = modeleq.replace(' + ' + xdrop,'') 
            #print('Model equation:',modeleq,'\n')
            print('Variable to drop:',xdrop,'       p-value =',prf[xdrop])
            #print('\nVariable left:\n'+str(prf[maxp!=prf][:-1]),'\n')
        print('\nF-statistic =',hout.fvalue,'       PR(>F) =',hout.f_pvalue)
        print('Variable left:\n'+str(prf[maxp!=prf][:-1]),'\n')
        #input("found intercept")
        print('Best model equation:',bmodeleq)
        print('Minimum PR(>F) =',minfpv,'\n')
    hout=ols(bmodeleq, data=h).fit()
    print(sm.stats.anova_lm(hout, typ=1))
    #print(anova) # Anova table with 'Treatment' broken up
    hsum=hout.summary()
    print('\n',hsum)
    last=3 #number of bottom p-values to display with more precision
    #p-values are not in general the same as PR(>F) from ANOVA
    print("\nLast",last,"x-coefficients' p-values:")
    nxvar=len(hout.pvalues)
    for i in range(last,0,-1):
        print('    ',hout.pvalues.axes[0][nxvar-i],'    ',hout.pvalues[nxvar-i])
    # Output Coefficient table:
    #from IPython.core.display import HTML
    #HTML(hout.summary().tables[1].as_html()) #.tables[] from 0 to 3
mr(True) # do Variable Selection
#mr() # do multiple regression once
Appreciate any form of help i can get and thank you in advance!!
 
                        
In your codes,
Line 66gives the clues on answering your question.houthas anaicattribute that you can call usinghout.aicThe straight-out answer is to use
hout.aicinstead ofhout.f_pvalueforLine 67.However, you need to re-specify the initial check value
minfpvsince 1.0 would be too small for AIC in this case. That is forLine 56.Try it out and see what the initial
minfpvshould be.Neo
:)