I'm working on a small Java application that performs calculations on matrices. This is what I did for now to calculate the determinant and inverse of a square matrix. But I want to use the class Jama for the calculation of the eigenvalues and eigenvectors, but I do not know how to use it, could anyone give me a hand? Thanks.
import java.util.Scanner;
import Jama.*;
public class matrix {
   public static void main(String[] args) {
      double[][] matrix;
      double det;
      int n;
      Scanner scanner = new Scanner(System.in);
      System.out.println("Dimension of the matrix: ");
      n = scanner.nextInt();
      matrix = new int[n][n];
      // insert values
      for (int i = 0; i < n; i++) {
         for (int j = 0; j < n; j++) {
            System.out.printf("Values: " + i + " - " + j);
            System.out.printf("\n");
            matrix[i][j] = scanner.nextDouble();
         }
      }
      // calculate determinant
      det = dete(matrix, n);
   }
   private static dete(double ai[][], int i) {
      double l = 0;
      if (i == 1)
         l = ai[0][0];
      else if (i == 2) {
         l = ai[0][0] * ai[1][1] - ai[0][1] * ai[1][0];
      } else {
         double ai1[][] = new double[i - 1][i - 1];
         for (int k = 0; k < i; k++) {
            for (int i1 = 1; i1 < i; i1++) {
               int j = 0;
               for (int j1 = 0; j1 < i; j1++)
                  if (j1 != k) {
                     ai1[i1 - 1][j] = ai[i1][j1];
                     j++;
                  }
            }
            if (k % 2 == 0)
               l += ai[0][k] * dete(ai1, i - 1);
            else
               l -= ai[0][k] * dete(ai1, i - 1);
         }
      }
      return l;
   }
}
				
                        
You just have to do this -
Do not forget to include Jama.Matrix.EigenvalueDecomposition.
You can have a look here