I am beginner to Keras. I am following this example where I am training binary classification model using Keras where input data is structured data taken from a csv, but I am getting following error
ValueError: Layer model expects 21 input(s), but it received 1 input tensors. Inputs received: [<tf.Tensor 'ExpandDims:0' shape=(None, 1) dtype=float64>]
at line
score = model.evaluate(x=test_labels, y=test_data, verbose=1)
My code look like below
import os
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import Normalization
def dataframe_to_dataset(dataframe):
dataframe = dataframe.copy()
labels = dataframe.pop("label")
labels = np.asarray(labels).astype('float32').reshape((-1, 1))
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))
ds = ds.shuffle(buffer_size=len(dataframe))
return ds
os.chdir('datasets/accelerometer/accel-labeled/')
df = pd.read_csv("combined-all-labeled.csv", delimiter=',')
print(f"All size : {df.shape[0]}")
np.random.seed(23)
perm = np.random.permutation(df.index)
m = len(df.index)
train_end = int(.70 * m)
validate_end = int(.25 * m) + train_end
train_ds = dataframe_to_dataset(df.iloc[perm[:train_end]])
validate_ds = dataframe_to_dataset(df.iloc[perm[train_end:validate_end]])
test_df = df.iloc[perm[validate_end:]]
test_labels = test_df['label'].astype('float')
test_data = test_df.iloc[:, 2:22].astype('float')
print(test_data.head(2))
print(f"Train Set size : {len(train_ds)}")
print(f"Validation Set size : {len(validate_ds)}")
print(f"Test Set size : {len(test_df)}")
def encode_numerical_feature(feature, name, dataset):
# Create a Normalization layer for our feature
normalizer = Normalization()
# Prepare a Dataset that only yields our feature
feature_ds = dataset.map(lambda x, y: x[name])
feature_ds = feature_ds.map(lambda x: tf.expand_dims(x, -1))
# Learn the statistics of the data
normalizer.adapt(feature_ds)
# Normalize the input feature
encoded_feature = normalizer(feature)
return encoded_feature
# Numerical features
x_mean = keras.Input(shape=(1,), name="x_mean")
x_median = keras.Input(shape=(1,), name="x_median")
x_std_dev = keras.Input(shape=(1,), name="x_stdev")
x_raw_min = keras.Input(shape=(1,), name="x_raw_min")
x_raw_max = keras.Input(shape=(1,), name="x_raw_max")
x_abs_min = keras.Input(shape=(1,), name="x_abs_min")
x_abs_max = keras.Input(shape=(1,), name="x_abs_max")
y_mean = keras.Input(shape=(1,), name="y_mean")
y_median = keras.Input(shape=(1,), name="y_median")
y_std_dev = keras.Input(shape=(1,), name="y_stdev")
y_raw_min = keras.Input(shape=(1,), name="y_raw_min")
y_raw_max = keras.Input(shape=(1,), name="y_raw_max")
y_abs_min = keras.Input(shape=(1,), name="y_abs_min")
y_abs_max = keras.Input(shape=(1,), name="y_abs_max")
z_mean = keras.Input(shape=(1,), name="z_mean")
z_median = keras.Input(shape=(1,), name="z_median")
z_std_dev = keras.Input(shape=(1,), name="z_stdev")
z_raw_min = keras.Input(shape=(1,), name="z_raw_min")
z_raw_max = keras.Input(shape=(1,), name="z_raw_max")
z_abs_min = keras.Input(shape=(1,), name="z_abs_min")
z_abs_max = keras.Input(shape=(1,), name="z_abs_max")
all_inputs = [
x_mean,
x_median,
x_std_dev,
x_raw_min,
x_raw_max,
x_abs_min,
x_abs_max,
y_mean,
y_median,
y_std_dev,
y_raw_min,
y_raw_max,
y_abs_min,
y_abs_max,
z_mean,
z_median,
z_std_dev,
z_raw_min,
z_raw_max,
z_abs_min,
z_abs_max,
]
# Numerical features
x_mean_encoded = encode_numerical_feature(x_mean, "x_mean", train_ds)
x_median_encoded = encode_numerical_feature(x_median, "x_median", train_ds)
x_std_dev_encoded = encode_numerical_feature(x_std_dev, "z_stdev", train_ds)
x_raw_min_encoded = encode_numerical_feature(x_raw_min, "x_raw_min", train_ds)
x_raw_max_encoded = encode_numerical_feature(x_raw_max, "x_raw_max", train_ds)
x_abs_min_encoded = encode_numerical_feature(x_abs_min, "x_abs_min", train_ds)
x_abs_max_encoded = encode_numerical_feature(x_abs_max, "x_abs_max", train_ds)
y_mean_encoded = encode_numerical_feature(y_mean, "y_mean", train_ds)
y_median_encoded = encode_numerical_feature(y_median, "y_median", train_ds)
y_std_dev_encoded = encode_numerical_feature(y_std_dev, "z_stdev", train_ds)
y_raw_min_encoded = encode_numerical_feature(y_raw_min, "y_raw_min", train_ds)
y_raw_max_encoded = encode_numerical_feature(y_raw_max, "y_raw_max", train_ds)
y_abs_min_encoded = encode_numerical_feature(y_abs_min, "y_abs_min", train_ds)
y_abs_max_encoded = encode_numerical_feature(y_abs_max, "y_abs_max", train_ds)
z_mean_encoded = encode_numerical_feature(z_mean, "z_mean", train_ds)
z_median_encoded = encode_numerical_feature(z_median, "z_median", train_ds)
z_std_dev_encoded = encode_numerical_feature(z_std_dev, "z_stdev", train_ds)
z_raw_min_encoded = encode_numerical_feature(z_raw_min, "z_raw_min", train_ds)
z_raw_max_encoded = encode_numerical_feature(z_raw_max, "z_raw_max", train_ds)
z_abs_min_encoded = encode_numerical_feature(z_abs_min, "z_abs_min", train_ds)
z_abs_max_encoded = encode_numerical_feature(z_abs_max, "z_abs_max", train_ds)
all_features = layers.concatenate(
[
x_mean_encoded,
x_median_encoded,
x_std_dev_encoded,
x_raw_min_encoded,
x_raw_max_encoded,
x_abs_min_encoded,
x_abs_max_encoded,
y_mean_encoded,
y_median_encoded,
y_std_dev_encoded,
y_raw_min_encoded,
y_raw_max_encoded,
y_abs_min_encoded,
y_abs_max_encoded,
z_mean_encoded,
z_median_encoded,
z_std_dev_encoded,
z_raw_min_encoded,
z_raw_max_encoded,
z_abs_min_encoded,
z_abs_max_encoded,
]
)
x = layers.Dense(32, activation="relu")(all_features)
x = layers.Dropout(0.5)(x)
output = layers.Dense(1, activation="sigmoid")(x)
model = keras.Model(all_inputs, output)
model.compile("adam", "binary_crossentropy", metrics=["accuracy"])
# `rankdir='LR'` is to make the graph horizontal.
keras.utils.plot_model(model, show_shapes=True, rankdir="LR")
# model.summary()
# Train model
model.fit(train_ds, epochs=1, validation_data=validate_ds)
score = model.evaluate(x=test_labels, y=test_data, verbose=1)
#
print('Test loss: ', score[0])
print('Test accuracy: ', score[1])
CSV look like below
group_timestamp,label,x_mean,x_median,x_stdev,x_raw_min,x_raw_max,x_abs_min,x_abs_max,y_mean,y_median,y_stdev,y_raw_min,y_raw_max,y_abs_min,y_abs_max,z_mean,z_median,z_stdev,z_raw_min,z_raw_max,z_abs_min,z_abs_max
2017-05-02 17:35:20,0,-8.40793368,-8.432378499999999,0.0812278134949539,-8.632295,-8.24563,8.24563,8.632295,-180900768.0,-180900768.0,0.0,-180900768.0,-180900768.0,180900768.0,180900768.0,180900768.0,180900768.0,0.0,180900768.0,180900768.0,180900768.0,180900768.0
2017-05-02 17:19:40,0,1.96025263,1.9716251,0.0710845152401064,1.816002,2.112883,1.816002,2.112883,-180900768.0,-180900768.0,0.0,-180900768.0,-180900768.0,180900768.0,180900768.0,180900752.0,180900752.0,0.0,180900752.0,180900752.0,180900752.0,180900752.0
...
How could I fix this?
Additionally any other input fix/improve code/model are welcome!
Improvement suggestion, check the command in line 174: