I am trying to implement Quantum Kernel Ridge Regression (replacing the classical kernel with quantum kernel) in qiskit. The shape of my input x is (7165 x 529) and due to reshaping errors, I added an extra column with zeroes to make it (7165 x 530) and shape of y is (7165,).
I was able to implement the classical KRR but when I am trying to replace the kernel with the quantum counterpart, I am getting the mentioned error.
x and y:
2
(7165, 530)
[[36.858105 2.9076326 2.907612 ... 0. 0. 0. ]
[36.858105 12.599944 2.9019997 ... 0. 0. 0. ]
[36.858105 14.261827 1.503703 ... 0. 0. 0. ]
...
[36.858105 8.569991 13.293801 ... 0. 0. 0. ]
[36.858105 12.540301 8.026131 ... 0. 0. 0. ]
[36.858105 12.629306 12.609996 ... 0. 0. 0. ]]
1
(7165,)
[ -417.96 -712.42 -564.21 ... -1662.1 -1782.01 -1919. ]
Code:
data_feature_map = ZZFeatureMap(feature_dimension= 2, reps=2, entanglement="linear")
data_backend = QuantumInstance(
BasicAer.get_backend("qasm_simulator"), shots=1024, seed_simulator=seed, seed_transpiler=seed
)
data_kernel = QuantumKernel(feature_map=data_feature_map, quantum_instance=data_backend)
quantum_kernel = KernelRidge(kernel=data_kernel.evaluate)
quantum_kernel.fit(x_train, y_train)
predictions = quantum_kernel.predict(x_test)
score = quantum_kernel.score(x_test,y_test)
rmse = math.sqrt(mean_squared_error(y_test, predictions))
print('Kernel Ridge Regression Score: %.1f' % score)
print('############################')
print('Root Mean Squared Error: %.1f' % rmse)
Error:
TypeError Traceback (most recent call last)
TypeError: only size-1 arrays can be converted to Python scalars
The above exception was the direct cause of the following exception:
ValueError Traceback (most recent call last)
Input In [74], in <cell line: 2>()
1 quantum_kernel = KernelRidge(kernel=data_kernel.evaluate)
----> 2 quantum_kernel.fit(x_train, y_train)
4 predictions = quantum_kernel.predict(x_test)
6 score = quantum_kernel.score(x_test,y_test)
File /opt/conda/lib/python3.8/site-packages/sklearn/kernel_ridge.py:197, in KernelRidge.fit(self, X, y, sample_weight)
194 if sample_weight is not None and not isinstance(sample_weight, float):
195 sample_weight = _check_sample_weight(sample_weight, X)
--> 197 K = self._get_kernel(X)
198 alpha = np.atleast_1d(self.alpha)
200 ravel = False
File /opt/conda/lib/python3.8/site-packages/sklearn/kernel_ridge.py:155, in KernelRidge._get_kernel(self, X, Y)
153 else:
154 params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0}
--> 155 return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params)
File /opt/conda/lib/python3.8/site-packages/sklearn/metrics/pairwise.py:2053, in pairwise_kernels(X, Y, metric, filter_params, n_jobs, **kwds)
2050 else:
2051 raise ValueError("Unknown kernel %r" % metric)
-> 2053 return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
File /opt/conda/lib/python3.8/site-packages/sklearn/metrics/pairwise.py:1430, in _parallel_pairwise(X, Y, func, n_jobs, **kwds)
1427 X, Y, dtype = _return_float_dtype(X, Y)
1429 if effective_n_jobs(n_jobs) == 1:
-> 1430 return func(X, Y, **kwds)
1432 # enforce a threading backend to prevent data communication overhead
1433 fd = delayed(_dist_wrapper)
File /opt/conda/lib/python3.8/site-packages/sklearn/metrics/pairwise.py:1457, in _pairwise_callable(X, Y, metric, force_all_finite, **kwds)
1455 iterator = itertools.combinations(range(X.shape[0]), 2)
1456 for i, j in iterator:
-> 1457 out[i, j] = metric(X[i], Y[j], **kwds)
1459 # Make symmetric
1460 # NB: out += out.T will produce incorrect results
1461 out = out + out.T
ValueError: setting an array element with a sequence.
I am aware that this is caused by ill formed input but after trying all the possible suggestions online, I still am not able to figure out the problem. Any help would be appreciated !