What are 'if ,define, lambda' in scheme?

375 Views Asked by At

We have a course whose project is to implement a micro-scheme interpreter in C++. In my implementation, I treat 'if', 'define', 'lambda' as procedures, so it is valid in my implementation to eval 'if', 'define' or 'lambda', and it is also fine to write expressions like '(apply define (quote (a 1)))', which will bind 'a' to 1.

But I find in racket and in mit-scheme, 'if', 'define', 'lambda' are not evaluable. For example,

enter image description here

It seems that they are not procedures, but I cannot figure out what they are and how they are implemented. Can someone explain these to me?

1

There are 1 best solutions below

0
On

In the terminology of Lisp, expressions to be evaluated are forms. Compound forms (those which use list syntax) are divided into special forms (headed by special operators like let), macro forms, and function call forms.

The Scheme report desn't use this terminology. It calls functions "procedures". Scheme's special forms are called "syntax". Macros are "derived expression types", individually introduced as "library syntax". (The motivation for this may be some conscious decision to blend into the CS academic mainstream by scrubbing some unfamiliar Lisp terminology. Algol has procedures and a BNF-defined syntax, Scheme has procedures and a BNF-defined syntax. That ticks off some sort of familiarity checkbox.)

Special forms (or "syntax") are recognized by interpreters and compilers as a set of special cases. The interpreter or compiler may handle these forms via function-like bindings in some internal table keyed on symbols, but it's not the program-visible binding namespace.

Setting up these associations in the regular namespace isn't necessarily wrong, but it could be problematic. If you want both a compiler and interpreter, but let has only one top-level binding, that will be an issue: who gets to install their procedure into that binding: the interpreter or compiler? (One way to resolve that is simple: make the binding values cons pairs: the car can be the interpreter function, the cdr the compiler function. But then these bindings are not procedures any more that you can apply.)

Exposing these bindings to the application is problematic anyway, because the semantics is so different between interpretation and compilation. If your interpretation is interpreted, then calling the define binding as a function is possible; it has the effect of performing the definition. But in a compiled interpretation, code depending on this won't work; define will be a function that doesn't actually define anything, but rather compiles: it calculates and returns a compiled fragment written in some intermediate representation.

About your implementation, the fact that (apply define (quote (a 1))) works in your implementation raises a bit of a red flag. Either you've made the environment parameter of the function optional, or it doesn't take one. Functions implementing special operators (or "syntax") need an environment parameter, not just the piece of syntax. (At least if we are developing a lexically scoped Scheme or Lisp!)

The fact that (apply define (quote (a 1))) works also suggests that your define function is taking quote and (a 1) as arguments. While that is workable, the usual approach for these kinds of syntax procedures is to take the whole form as one argument (and a lexical environment as another argument). If such a function can be called, the invocation looks something like like (apply define (list '(define a 1) (null-environment 5))). The procedure itself will do any necessary destructuring on the syntax, and checking for validity: are there too many or too few parameters and so on.