A Gaussian filter can be applied to an image using the following commands:
cv.GaussianBlur(src, ksize, sigmaX[, dst[, sigmaY[, borderType=BORDER_DEFAULT]]] )
For Example:
import cv2
import numpy as np
a = np.arange(50, step=2).reshape((5,5)).astype('uint8')
print(a)
J1 = cv2.GaussianBlur(a,ksize=(3,3), sigmaX =1, sigmaY=1,
borderType=cv2.BORDER_CONSTANT)
print(J1)
The Answer is:
[[ 2 4 6 7 6]
[ 8 12 14 16 13]
[15 22 24 26 20]
[22 32 34 36 27]
[20 28 29 31 23]]
from scipy.ndimage import gaussian_filter
gaussian_filter(a, sigma=1,mode='constant',cval=0)
For Example, My Code is:
from scipy.ndimage import gaussian_filter
gaussian_filter(a, sigma=1,mode='constant',cval=0)
The answer is:
array([[ 2, 3, 5, 6, 5],
[ 6, 9, 12, 14, 11],
[13, 19, 22, 23, 18],
[19, 26, 29, 29, 23],
[17, 23, 26, 26, 19]])
- We can create our filter using the equation $G(x,y) = \frac{1}{2\pi \sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$, and then apply this filer on an image using
cv2.filter2D
command.
For Example, My Code is:
import cv2
import numpy as np
x, y = np.meshgrid(np.linspace(-1,1,3), np.linspace(-1,1,3))
d = x**2 + y**2
sigma, mu = 1.0, 0.0
K = (1/(2*np.pi*sigma**2))*np.exp(- d / ( 2.0 * sigma**2 ) )
J2 = cv2.filter2D(a,-1,K, borderType=cv2.BORDER_CONSTANT)
print(J2)
The answer is:
[[ 2 3 4 6 5]
[ 6 9 11 12 10]
[12 17 19 20 15]
[17 25 27 28 21]
[15 22 23 24 18]]
The answers to all these methods are different, so my question is that what kernel values (coefficients) are used for the filter.
You can find out the filter coefficients like this: Create a zeros matrix (or image), such as 20x20 or more, and set one pixel in the center to 1.0. Make a filter this matrix and print the result. The result will be equal to the coefficients of the filter. See "point spread function (PSF)" in wiki.