I am training a model for Optical Character Recognition of Gujarati Language. The input image is a character image. I have taken 37 classes. Total training images are 22200 (600 per class) and testing images are 5920 (160 per class). My input images are 32x32
Below is my code:
model = tf.keras.applications.DenseNet121(include_top=False, weights='imagenet', pooling='max')
base_inputs = model.layers[0].input
base_outputs = model.layers[-1].output # NOTICE -1 not -2
prefinal_outputs = layers.Dense(1024)(base_outputs)
final_outputs = layers.Dense(37)(prefinal_outputs)
new_model = keras.Model(inputs=base_inputs, outputs=base_outputs)
from tensorflow.keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=False)
test_datagen = ImageDataGenerator(horizontal_flip = False)
training_set = train_datagen.flow_from_directory('C:/Users/shweta/Desktop/characters/train',
target_size = (32, 32),
batch_size = 64,
class_mode = 'categorical')
test_set = test_datagen.flow_from_directory('C:/Users/shweta/Desktop/characters/test',
target_size = (32, 32),
batch_size = 64,
class_mode = 'categorical')
new_model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])
new_model.fit_generator(training_set,
epochs = 25,
validation_data = test_set, shuffle=True)
new_model.save('alphanumeric.mod')
I am getting following output:
Thanks in advance!

First of all, very well written code. These are some of the things, I have noticed while I was going through the code and tf,keras docs.
I would like to ask what kind of labels have you got beacuse you know categorical_crossentropy expects ONE HOT CODED labels.(Check this).So, if your labels are integers, use sparsecategoricalentropy.
Similar issue There was post where someone was trying to classsify into 2 and used categorical instead of binary crossentropy. If you want to look at.
Cheers Let me know how it goes!
PS: @gerry made a very good point and if labels are One hot encoded use categoricalcrossentropy!