Initially, I tried running a poisson GLM on count data (no of eggs laid) with four independent variables (Temperature - factor with 4 levels; Sex.treated - factor with two levels; Species - factor with two levels; Date.mated - factor with 9 levels).
fecundity <- glm(Egg.total ~ Temperature*Sex.treated*Species + Date.mated, data=fecundity.na.2, family = poisson)
summary(fecundity)
By calculating theta manually and by using the dispersiontest() function from the package AER I found my data to be significantly overdispersed:
theta<-fecundity$deviance/fecundity$df.residual
theta
[1] 63.2298
install.packages("AER")
library(AER)
dispersiontest(fecundity)
Overdispersion test
data: fecundity
z = 9.7918, p-value < 2.2e-16
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion
43.75891
As a result of this I thought I should use a negative binomial GLM instead:
library(MASS)
fecundity.nb<-glm.nb(Egg.total ~ Temperature*Sex.treated*Species + Date.mated, link = "log", data = fecundity.na.2)
summary(fecundity.nb, cor = FALSE)
When trying to run this negative binomial model I get the following errors:
There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
Warning messages:
1: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
2: In sqrt(1/i) : NaNs produced
3: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
4: In sqrt(1/i) : NaNs produced
5: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
6: In sqrt(1/i) : NaNs produced
7: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
8: In sqrt(1/i) : NaNs produced
9: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
10: In sqrt(1/i) : NaNs produced
11: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
12: In sqrt(1/i) : NaNs produced
13: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
14: In sqrt(1/i) : NaNs produced
15: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
16: In sqrt(1/i) : NaNs produced
17: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
18: In sqrt(1/i) : NaNs produced
19: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
20: In sqrt(1/i) : NaNs produced
21: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
22: In sqrt(1/i) : NaNs produced
23: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
24: In sqrt(1/i) : NaNs produced
25: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
26: In sqrt(1/i) : NaNs produced
27: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
28: In sqrt(1/i) : NaNs produced
29: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
30: In sqrt(1/i) : NaNs produced
31: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
32: In sqrt(1/i) : NaNs produced
33: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
34: In sqrt(1/i) : NaNs produced
35: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
36: In sqrt(1/i) : NaNs produced
37: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
38: In sqrt(1/i) : NaNs produced
39: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
40: In sqrt(1/i) : NaNs produced
41: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
42: In sqrt(1/i) : NaNs produced
43: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
44: In sqrt(1/i) : NaNs produced
45: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
46: In sqrt(1/i) : NaNs produced
47: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
48: In sqrt(1/i) : NaNs produced
49: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace > ... :
iteration limit reached
50: In sqrt(1/i) : NaNs produced
Furthermore, when I try to look at the summary output I get the following error message as well:
> summary(fecundity.nb, cor = FALSE)
Call:
glm.nb(formula = Egg.total ~ Temperature * Sex.treated * Species +
Date.mated, data = fecundity.na.2, link = "log", init.theta = 1073170.331)
Deviance Residuals:
Min 1Q Median 3Q Max
-23.2279 -3.9995 0.7839 4.5374 13.2954
Coefficients:
Estimate Std. Error
(Intercept) 5.064676 0.049745
Temperature23 -0.109165 0.033531
Temperature26 0.171934 0.047335
Temperature29 0.012718 0.055465
Sex.treatedM -0.258422 0.030089
SpeciesHA -0.020623 0.029056
Date.mated02/04/2022 0.338195 0.026203
Date.mated07/04/2022 0.391752 0.038131
Date.mated08/04/2022 0.512034 0.035641
Date.mated10/04/2022 0.595383 0.041489
Date.mated14/04/2022 0.424656 0.047764
Date.mated25/03/2022 0.080750 0.040257
Date.mated27/03/2022 0.016816 0.031935
Date.mated28/03/2022 -0.012853 0.022555
Temperature23:Sex.treatedM 0.375622 0.040798
Temperature26:Sex.treatedM -0.002279 0.044383
Temperature29:Sex.treatedM 0.347855 0.042752
Temperature23:SpeciesHA 0.217392 0.040779
Temperature26:SpeciesHA -0.010053 0.042975
Temperature29:SpeciesHA 0.518337 0.043234
Sex.treatedM:SpeciesHA -0.079269 0.044795
Temperature23:Sex.treatedM:SpeciesHA -0.200261 0.062277
Temperature26:Sex.treatedM:SpeciesHA 0.127918 0.059108
Temperature29:Sex.treatedM:SpeciesHA -0.135161 0.059965
z value Pr(>|z|)
(Intercept) 101.812 < 2e-16 ***
Temperature23 -3.256 0.001131 **
Temperature26 3.632 0.000281 ***
Temperature29 0.229 0.818634
Sex.treatedM -8.589 < 2e-16 ***
SpeciesHA -0.710 0.477836
Date.mated02/04/2022 12.907 < 2e-16 ***
Date.mated07/04/2022 10.274 < 2e-16 ***
Date.mated08/04/2022 14.366 < 2e-16 ***
Date.mated10/04/2022 14.350 < 2e-16 ***
Date.mated14/04/2022 8.891 < 2e-16 ***
Date.mated25/03/2022 2.006 0.044872 *
Date.mated27/03/2022 0.527 0.598497
Date.mated28/03/2022 -0.570 0.568799
Temperature23:Sex.treatedM 9.207 < 2e-16 ***
Temperature26:Sex.treatedM -0.051 0.959042
Temperature29:Sex.treatedM 8.137 4.07e-16 ***
Temperature23:SpeciesHA 5.331 9.77e-08 ***
Temperature26:SpeciesHA -0.234 0.815046
Temperature29:SpeciesHA 11.989 < 2e-16 ***
Sex.treatedM:SpeciesHA -1.770 0.076794 .
Temperature23:Sex.treatedM:SpeciesHA -3.216 0.001301 **
Temperature26:Sex.treatedM:SpeciesHA 2.164 0.030455 *
Temperature29:Sex.treatedM:SpeciesHA -2.254 0.024196 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(1073170) family taken to be 1)
Null deviance: 12410 on 193 degrees of freedom
Residual deviance: 10747 on 170 degrees of freedom
AIC: 12136
Number of Fisher Scoring iterations: 1
Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
invalid 'nsmall' argument
Would anyone be able to tell me why I get these error messages and what I can do about them?