Why do I get these errors when running a negative binomial GLM?

123 Views Asked by At

Initially, I tried running a poisson GLM on count data (no of eggs laid) with four independent variables (Temperature - factor with 4 levels; Sex.treated - factor with two levels; Species - factor with two levels; Date.mated - factor with 9 levels).

fecundity <- glm(Egg.total ~ Temperature*Sex.treated*Species + Date.mated, data=fecundity.na.2,  family = poisson)
summary(fecundity)

By calculating theta manually and by using the dispersiontest() function from the package AER I found my data to be significantly overdispersed:

theta<-fecundity$deviance/fecundity$df.residual
theta 
[1] 63.2298

install.packages("AER")
library(AER)
dispersiontest(fecundity)

Overdispersion test

data:  fecundity
z = 9.7918, p-value < 2.2e-16
alternative hypothesis: true dispersion is greater than 1
sample estimates:
dispersion 
  43.75891 

As a result of this I thought I should use a negative binomial GLM instead:

library(MASS)
fecundity.nb<-glm.nb(Egg.total ~ Temperature*Sex.treated*Species + Date.mated, link = "log", data = fecundity.na.2)
summary(fecundity.nb, cor = FALSE)

When trying to run this negative binomial model I get the following errors:

There were 50 or more warnings (use warnings() to see the first 50)
> warnings()
Warning messages:
1: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
2: In sqrt(1/i) : NaNs produced
3: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
4: In sqrt(1/i) : NaNs produced
5: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
6: In sqrt(1/i) : NaNs produced
7: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
8: In sqrt(1/i) : NaNs produced
9: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
10: In sqrt(1/i) : NaNs produced
11: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
12: In sqrt(1/i) : NaNs produced
13: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
14: In sqrt(1/i) : NaNs produced
15: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
16: In sqrt(1/i) : NaNs produced
17: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
18: In sqrt(1/i) : NaNs produced
19: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
20: In sqrt(1/i) : NaNs produced
21: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
22: In sqrt(1/i) : NaNs produced
23: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
24: In sqrt(1/i) : NaNs produced
25: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
26: In sqrt(1/i) : NaNs produced
27: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
28: In sqrt(1/i) : NaNs produced
29: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
30: In sqrt(1/i) : NaNs produced
31: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
32: In sqrt(1/i) : NaNs produced
33: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
34: In sqrt(1/i) : NaNs produced
35: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
36: In sqrt(1/i) : NaNs produced
37: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
38: In sqrt(1/i) : NaNs produced
39: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
40: In sqrt(1/i) : NaNs produced
41: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
42: In sqrt(1/i) : NaNs produced
43: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
44: In sqrt(1/i) : NaNs produced
45: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
46: In sqrt(1/i) : NaNs produced
47: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
48: In sqrt(1/i) : NaNs produced
49: In theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace >  ... :
  iteration limit reached
50: In sqrt(1/i) : NaNs produced

Furthermore, when I try to look at the summary output I get the following error message as well:

> summary(fecundity.nb, cor = FALSE)

Call:
glm.nb(formula = Egg.total ~ Temperature * Sex.treated * Species + 
    Date.mated, data = fecundity.na.2, link = "log", init.theta = 1073170.331)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-23.2279   -3.9995    0.7839    4.5374   13.2954  

Coefficients:
                                      Estimate Std. Error
(Intercept)                           5.064676   0.049745
Temperature23                        -0.109165   0.033531
Temperature26                         0.171934   0.047335
Temperature29                         0.012718   0.055465
Sex.treatedM                         -0.258422   0.030089
SpeciesHA                            -0.020623   0.029056
Date.mated02/04/2022                  0.338195   0.026203
Date.mated07/04/2022                  0.391752   0.038131
Date.mated08/04/2022                  0.512034   0.035641
Date.mated10/04/2022                  0.595383   0.041489
Date.mated14/04/2022                  0.424656   0.047764
Date.mated25/03/2022                  0.080750   0.040257
Date.mated27/03/2022                  0.016816   0.031935
Date.mated28/03/2022                 -0.012853   0.022555
Temperature23:Sex.treatedM            0.375622   0.040798
Temperature26:Sex.treatedM           -0.002279   0.044383
Temperature29:Sex.treatedM            0.347855   0.042752
Temperature23:SpeciesHA               0.217392   0.040779
Temperature26:SpeciesHA              -0.010053   0.042975
Temperature29:SpeciesHA               0.518337   0.043234
Sex.treatedM:SpeciesHA               -0.079269   0.044795
Temperature23:Sex.treatedM:SpeciesHA -0.200261   0.062277
Temperature26:Sex.treatedM:SpeciesHA  0.127918   0.059108
Temperature29:Sex.treatedM:SpeciesHA -0.135161   0.059965
                                     z value Pr(>|z|)    
(Intercept)                          101.812  < 2e-16 ***
Temperature23                         -3.256 0.001131 ** 
Temperature26                          3.632 0.000281 ***
Temperature29                          0.229 0.818634    
Sex.treatedM                          -8.589  < 2e-16 ***
SpeciesHA                             -0.710 0.477836    
Date.mated02/04/2022                  12.907  < 2e-16 ***
Date.mated07/04/2022                  10.274  < 2e-16 ***
Date.mated08/04/2022                  14.366  < 2e-16 ***
Date.mated10/04/2022                  14.350  < 2e-16 ***
Date.mated14/04/2022                   8.891  < 2e-16 ***
Date.mated25/03/2022                   2.006 0.044872 *  
Date.mated27/03/2022                   0.527 0.598497    
Date.mated28/03/2022                  -0.570 0.568799    
Temperature23:Sex.treatedM             9.207  < 2e-16 ***
Temperature26:Sex.treatedM            -0.051 0.959042    
Temperature29:Sex.treatedM             8.137 4.07e-16 ***
Temperature23:SpeciesHA                5.331 9.77e-08 ***
Temperature26:SpeciesHA               -0.234 0.815046    
Temperature29:SpeciesHA               11.989  < 2e-16 ***
Sex.treatedM:SpeciesHA                -1.770 0.076794 .  
Temperature23:Sex.treatedM:SpeciesHA  -3.216 0.001301 ** 
Temperature26:Sex.treatedM:SpeciesHA   2.164 0.030455 *  
Temperature29:Sex.treatedM:SpeciesHA  -2.254 0.024196 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(1073170) family taken to be 1)

    Null deviance: 12410  on 193  degrees of freedom
Residual deviance: 10747  on 170  degrees of freedom
AIC: 12136

Number of Fisher Scoring iterations: 1

Error in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L,  : 
  invalid 'nsmall' argument

Would anyone be able to tell me why I get these error messages and what I can do about them?

0

There are 0 best solutions below