I am running a code which basically goes like this:
Create table abc as
select A.* from
table1 A
Left outer join
table2 B
on
A.col1=B.col1 and A.col2=B.col2;
Number of records in table1=7009102 Number of records in table2=1787493
I have similar 6 queries in my script but my script is stuck on the 4th such query. I tried running via tez and mapreduce but both have the same issue.
In mapreduce it is stuck at map 0% nd reduce 0% even after an hour. There are no reducers In Tez, its only 22% in 1 hour.
Upon checking the logs it shows many entries like 'progress of TaskAttempt attempt_12334_m_000003_0 is: 0.0'.
I ran the job in tez, and now its almost 3 hours and the job is about to finish with 2 failed in Map-2 Vertice.
General tips to improve Hive queries to run faster
1. Use ORC File
Hive supports ORC file – a new table storage format that sports fantastic speed improvements through techniques like predicate pushdown (pushup in Hive), compression and more.
Using ORCFile for every HIVE table should really be a no-brainer, and extremely beneficial to get fast response times for your HIVE queries.
2. Use Vectorization Vectorized query execution improves performance of operations like scans, aggregations, filters, and joins, by performing them in batches of 1024 rows at once instead of a single row each time. Introduced in Hive 0.13, this feature significantly improves query execution time, and is easily enabled with two parameters settings:
3. Partition Based Joins: To optimize joins in Hive, we have to reduce the query scan time. For that, we can create a Hive table with partitions by specifying the partition predicates in the ‘WHERE’ clause or the ON clause in a JOIN.
For Example: The table ‘state view’ is partitioned on the column ‘state.’ The below query retrieves rows for only a given state: Optimizing Joins In Hive
If a table state view is joined with another table city users, you can specify a range of partitions in the ON clause as follows:
Hope this post helped you with all your joins optimization needs in Hive.