I wrote a main function which uses a stochastic optimization algorithm (Particle Swarm Optimization) to found optimal solution for a ODE system. I would run 50 times to make sure the optimal can be found. At first, it operates normally, but now I found the calculation time would increase with iteration increases. It cost less than 300s for first ten calculations, but it would increase to 500s for final calculation. It seems that it would cost 3~5 seconds more for each calculation. I have followed the high performance tips to optimize my code but it doesn't work.
I am sorry I don't know quite well how to upload my code before, here is the code I wrote below. But in this code, the experimental data is not loaded, I may need to find a way to upload data. In main function, with the increase of i, the time cost is increasing for each calculation.
Oh, by the way, I found another interesting phenomenon. I changed the number of calculations and the calculation time changed again. For first 20 calculations in main loop, each calculation cost about 300s, and the memory useage fluctuates significantly. But something I don't know happend, it is speeding up. It cost 1/4 time less time for each calculation, which is about 80s. And the memory useage became a straight line like this:
I knew the Julia would do pre-heating for first run and then speed up. But this situation seems different. This situation looks like Julia run slowly for first 20 calculation, and then it found a good way to optimize the memory useage and speed up. Then the program just run at full speed.
using CSV, DataFrames
using BenchmarkTools
using DifferentialEquations
using Statistics
using Dates
using Base.Threads
using Suppressor
function uniform(dim::Int, lb::Array{Float64, 1}, ub::Array{Float64, 1})
arr = rand(Float64, dim)
@inbounds for i in 1:dim; arr[i] = arr[i] * (ub[i] - lb[i]) + lb[i] end
return arr
end
mutable struct Problem
cost_func
dim::Int
lb::Array{Float64,1}
ub::Array{Float64,1}
end
mutable struct Particle
position::Array{Float64,1}
velocity::Array{Float64,1}
cost::Float64
best_position::Array{Float64,1}
best_cost::Float64
end
mutable struct Gbest
position::Array{Float64,1}
cost::Float64
end
function PSO(problem, data_dict; max_iter=100,population=100,c1=1.4962,c2=1.4962,w=0.7298,wdamp=1.0)
dim = problem.dim
lb = problem.lb
ub = problem.ub
cost_func = problem.cost_func
gbest, particles = initialize_particles(problem, population, data_dict)
# main loop
for iter in 1:max_iter
@threads for i in 1:population
particles[i].velocity .= w .* particles[i].velocity .+
c1 .* rand(dim) .* (particles[i].best_position .- particles[i].position) .+
c2 .* rand(dim) .* (gbest.position .- particles[i].position)
particles[i].position .= particles[i].position .+ particles[i].velocity
particles[i].position .= max.(particles[i].position, lb)
particles[i].position .= min.(particles[i].position, ub)
particles[i].cost = cost_func(particles[i].position,data_dict)
if particles[i].cost < particles[i].best_cost
particles[i].best_position = copy(particles[i].position)
particles[i].best_cost = copy(particles[i].cost)
if particles[i].best_cost < gbest.cost
gbest.position = copy(particles[i].best_position)
gbest.cost = copy(particles[i].best_cost)
end
end
end
w = w * wdamp
if iter % 50 == 1
println("Iteration " * string(iter) * ": Best Cost = " * string(gbest.cost))
println("Best Position = " * string(gbest.position))
println()
end
end
gbest, particles
end
function initialize_particles(problem, population,data_dict)
dim = problem.dim
lb = problem.lb
ub = problem.ub
cost_func = problem.cost_func
gbest_position = uniform(dim, lb, ub)
gbest = Gbest(gbest_position, cost_func(gbest_position,data_dict))
particles = []
for i in 1:population
position = uniform(dim, lb, ub)
velocity = zeros(dim)
cost = cost_func(position,data_dict)
best_position = copy(position)
best_cost = copy(cost)
push!(particles, Particle(position, velocity, cost, best_position, best_cost))
if best_cost < gbest.cost
gbest.position = copy(best_position)
gbest.cost = copy(best_cost)
end
end
return gbest, particles
end
function get_dict_label(beta::Int)
beta_str = lpad(beta,2,"0")
T_label = "Temperature_" * beta_str
M_label = "Mass_" * beta_str
MLR_label = "MLR_" * beta_str
return T_label, M_label, MLR_label
end
function get_error(x::Vector{Float64}, y::Vector{Float64})
numerator = sum((x.-y).^2)
denominator = var(x) * length(x)
numerator/denominator
end
function central_diff(x::AbstractArray{Float64}, y::AbstractArray{Float64})
# Central difference quotient
dydx = Vector{Float64}(undef, length(x))
dydx[2:end] .= diff(y) ./ diff(x)
@views dydx[2:end-1] .= (dydx[2:end-1] .+ dydx[3:end])./2
# Forward and Backward difference
dydx[1] = (y[2]-y[1])/(x[2]-x[1])
dydx[end] = (y[end]-y[end-1])/(x[end]-x[end-1])
return dydx
end
function decomposition!(dm,m,p,T)
# A-> residue + volitale
# B-> residue + volatile
beta,A1,E1,n1,k1,A2,E2,n2,k2,m1,m2 = p
R = 8.314
rxn1 = -m1 * exp(A1-E1/R/T) * max(m[1]/m1,0)^n1 / beta
rxn2 = -m2 * exp(A2-E2/R/T) * max(m[2]/m2,0)^n2 / beta
dm[1] = rxn1
dm[2] = rxn2
dm[3] = -k1 * rxn1 - k2 * rxn2
dm[4] = dm[1] + dm[2] + dm[3]
end
function read_file(file_path)
df = CSV.read(file_path, DataFrame)
data_dict = Dict{String, Vector{Float64}}()
for beta in 5:5:21
T_label, M_label, MLR_label = get_dict_label(beta)
T_data = collect(skipmissing(df[:, T_label]))
M_data = collect(skipmissing(df[:, M_label]))
T = T_data[T_data .< 780]
M = M_data[T_data .< 780]
data_dict[T_label] = T
data_dict[M_label] = M
data_dict[MLR_label] = central_diff(T, M)
end
return data_dict
end
function initial_condition(beta::Int64, ode_parameters::Array{Float64,1})
m_FR_initial = ode_parameters[end]
m_PVC_initial = 1 - m_FR_initial
T_span = (300.0, 800.0) # temperature range
p = [beta; ode_parameters; m_PVC_initial]
m0 = [p[end-1], p[end], 0.0, 1.0] # initial mass
return m0, T_span, p
end
function cost_func(ode_parameters, data_dict)
total_error = 0.0
for beta in 5:5:21
T_label, M_label, MLR_label= get_dict_label(beta)
T = data_dict[T_label]::Vector{Float64}
M = data_dict[M_label]::Vector{Float64}
MLR = data_dict[MLR_label]::Vector{Float64}
m0, T_span, p = initial_condition(beta,ode_parameters)
prob = ODEProblem(decomposition!,m0,T_span,p)
sol = solve(prob, AutoVern9(Rodas5(autodiff=false)),saveat=T,abstol=1e-8,reltol=1e-8,maxiters=1e4)
if sol.retcode != :Success
# println(1)
return Inf
else
M_sol = @view sol[end, :]
MLR_sol = central_diff(T, M_sol)::Array{Float64,1}
error1 = get_error(MLR, MLR_sol)::Float64
error2 = get_error(M, M_sol)::Float64
total_error += error1 + error2
end
end
total_error
end
function main()
flush(stdout)
total_time = 0
best_costs = []
file_path = raw"F:\17-Fabric\17-Fabric (Smoothed) TG.csv"
data_dict = read_file(file_path)
dimension = 9
lb = [5, 47450, 0.0, 0.0, 24.36, 148010, 0.0, 0.0, 1e-5]
ub = [25.79, 167700, 5, 1, 58.95, 293890, 5, 1, 0.25]
problem = Problem(cost_func,dimension,lb,ub)
global_best_cost = Inf
println("-"^100)
println("Running PSO ...")
population = 50
max_iter = 1001
println("The population is: ", population)
println("Max iteration is:", max_iter)
for i in 1:50 # The number of calculation
start_time = Dates.now()
println("Current iteration is: ", string(i))
gbest, particles = PSO(problem, data_dict, max_iter=max_iter, population=population)
if gbest.cost < global_best_cost
global_best_cost = gbest.cost
global_best_position = gbest.position
end
end_time = Dates.now()
time_duration = round(end_time-start_time, Second)
total_time += time_duration.value
push!(best_costs, gbest.cost)
println()
println("The Best is:")
println(gbest.cost)
println(gbest.position)
println("The calculation time is: " * string(time_duration))
println()
println("-"^50)
end
println('-'^100)
println("Global best cost is: ", global_best_cost)
println("Global best position is: ", global_best_position)
println(total_time)
best_costs
end
@suppress_err begin
@time global best_costs = main()
end
So, what is the possible mechanism for this? Is there a way to avoid this problem? Because If I increase the population and max iterations of particles, the time increased would be extremely large and thus is unacceptable.
And what is the possible mechanism for speed up the program I mentioned above? How to trigger this mechanism?
As the parameters of an ODE optimizes it can completely change its characteristics. Your equation could be getting more stiff and require different ODE solvers. There are many other related ways, but you can see how changing parameters could give such a performance issue. It's best to use methods like AutoTsit5(Rodas5()) and the like in such estimation cases because it's hard to know or guess what the performance will be like, and thus adaptiveness in the method choice can be crucial.