Why my tf.lite conversion is bad when the original ia is about %70?

27 Views Asked by At

I'm learning tiny, so I tried to convert an machine learning ia (https://github.com/mariostrbac/environmental-sound-classification) and add the tflite part of this course (https://colab.research.google.com/github/tinyMLx/colabs/blob/master/3-3-10-TFLiteOptimizations.ipynb).

But after adapting the code, my tinyml is bad (about 15% accuracy) and I don't know why.

I'm using google colab

Libraries

pip install np_utils
import numpy as np
import pandas as pd
import tensorflow as tf
import pathlib

from tensorflow.keras import regularizers, activations
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Activation, Conv2D, MaxPooling2D, GlobalAveragePooling2D
from tensorflow.keras.utils import to_categorical

from tensorflow.keras.preprocessing.image import ImageDataGenerator

from datetime import datetime

from matplotlib import pyplot as plt
%matplotlib inline

Import data (128x128 Log-Mel Spectrograms)


USE_GOOGLE_COLAB = True

if USE_GOOGLE_COLAB:
    from google.colab import drive
    drive.mount('/content/gdrive')

    # change the current working directory
    %cd /content/gdrive/MyDrive/
else:
    %cd US8K
us8k_df = pd.read_pickle("us8k_df.pkl")

function

#data augmentation

def init_data_aug():
    train_datagen = ImageDataGenerator(
        featurewise_center=True,
        featurewise_std_normalization=True,
        fill_mode = 'constant',
        cval=-80.0,
        width_shift_range=0.1,
        height_shift_range=0.0)

    val_datagen = ImageDataGenerator(
        featurewise_center=True,
        featurewise_std_normalization=True,
        fill_mode = 'constant',
        cval=-80.0)

    return train_datagen, val_datagen

#the model

def init_model():
    model1 = Sequential()

    #layer-1
    model1.add(Conv2D(filters=24, kernel_size=5, input_shape=(128, 128, 1),
                      kernel_regularizer=regularizers.l2(1e-3)))
    model1.add(MaxPooling2D(pool_size=(3,3), strides=3))
    model1.add(Activation(activations.relu))

    #layer-2
    model1.add(Conv2D(filters=36, kernel_size=4, padding='valid', kernel_regularizer=regularizers.l2(1e-3)))
    model1.add(MaxPooling2D(pool_size=(2,2), strides=2))
    model1.add(Activation(activations.relu))

    #layer-3
    model1.add(Conv2D(filters=48, kernel_size=3, padding='valid'))
    model1.add(Activation(activations.relu))

    model1.add(GlobalAveragePooling2D())

    #layer-4 (1st dense layer)
    model1.add(Dense(60, activation='relu'))
    model1.add(Dropout(0.5))

    #layer-5 (2nd dense layer)
    model1.add(Dense(10, activation='softmax'))


    # compile
    model1.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer='adam')

    return model1

#init model

model = init_model()
model.summary()

#split train/validation data

def train_test_split(fold_k, data, X_dim=(128, 128, 1)):
    X_train = np.stack(data[data.fold != fold_k].melspectrogram.to_numpy())
    X_test = np.stack(data[data.fold == fold_k].melspectrogram.to_numpy())

    y_train = data[data.fold != fold_k].label.to_numpy()
    y_test = data[data.fold == fold_k].label.to_numpy()

    XX_train = X_train.reshape(X_train.shape[0], *X_dim)
    XX_test = X_test.reshape(X_test.shape[0], *X_dim)

    yy_train = to_categorical(y_train)
    yy_test = to_categorical(y_test)


    return XX_train, XX_test, yy_train, yy_test

#Train data

def process_fold(fold_k, data, epochs=100, num_batch_size=32):
    
    
    
    # split the data
    X_train, X_test, y_train, y_test = train_test_split(fold_k, data)

    # init data augmention
    train_datagen, val_datagen = init_data_aug()

    # fit augmentation
    train_datagen.fit(X_train)
    val_datagen.fit(X_train)

    # init model
    model = init_model()

    # pre-training accuracy
    score = model.evaluate(val_datagen.flow(X_test, y_test, batch_size=num_batch_size), verbose=0)
    print("Pre-training accuracy: %.4f%%\n" % (100 * score[1]))

    # train the model
    start = datetime.now()
    history = model.fit(train_datagen.flow(X_train, y_train, batch_size=num_batch_size),
                        steps_per_epoch=len(X_train) / num_batch_size,
                        epochs=epochs,
                        validation_data=val_datagen.flow(X_test, y_test, batch_size=num_batch_size))
    end = datetime.now()
    print("Training completed in time: ", end - start, '\n')

    return history

def show_results(tot_history):
    """Show accuracy and loss graphs for train and test sets."""

    for i, history in enumerate(tot_history):
        print('\n({})'.format(i+1))

        plt.figure(figsize=(15,5))

        plt.subplot(121)
        plt.plot(history.history['accuracy'])
        plt.plot(history.history['val_accuracy'])
        plt.grid(linestyle='--')
        plt.ylabel('Accuracy')
        plt.xlabel('Epoch')
        plt.legend(['train', 'validation'], loc='upper left')

        plt.subplot(122)
        plt.plot(history.history['loss'])
        plt.plot(history.history['val_loss'])
        plt.grid(linestyle='--')
        plt.ylabel('Loss')
        plt.xlabel('Epoch')
        plt.legend(['train', 'validation'], loc='upper left')

        plt.show()

        print('\tMax validation accuracy: %.4f %%' % (np.max(history.history['val_accuracy']) * 100))
        print('\tMin validation loss: %.5f' % np.min(history.history['val_loss']))


Training model

FOLD_K = 10
REPEAT = 1

history10 = []

for i in range(REPEAT):
    print('-'*80)
    print("\n({})\n".format(i+1))

    history = process_fold(FOLD_K, us8k_df, epochs=100)
    history10.append(history)

########OR########

#reuse other parts

#Xz_train, Xz_test, yz_train, yz_test = train_test_split(FOLD_K, us8k_df)


#train_datagenz, val_datagenz = init_data_aug()


#train_datagenz.fit(Xz_train)
#val_datagenz.fit(Xz_train)


#model = init_model()

    # pre-training accuracy
#score = model.evaluate(val_datagenz.flow(Xz_test, yz_test, batch_size=32), verbose=0)
#print("Pre-training accuracy: %.4f%%\n" % (100 * score[1]))

    # train the model
#start = datetime.now()
#the_model = model.fit(train_datagenz.flow(Xz_train, yz_train, batch_size=32),
#                        steps_per_epoch=len(Xz_train) / 32,
#                        epochs=100,
#                        validation_data=val_datagenz.flow(Xz_test, yz_test, batch_size=32))
#end = datetime.now()
#print("Training completed in time: ", end - start, '\n')



Save the model, convert and optimize to tiny-ml

export_dir = '/content/gdrive/MyDrive/initial-model'
tf.saved_model.save(model, export_dir)
# Convert the model.
converter = tf.lite.TFLiteConverter.from_saved_model(export_dir)
tflite_model = converter.convert()

# Save the converted model
tflite_models_dir = pathlib.Path("/content/gdrive/MyDrive/tiny-model")
tflite_models_dir.mkdir(exist_ok=True, parents=True)
tflite_model_file = tflite_models_dir/"model-lite.tflite"
tflite_model_file.write_bytes(tflite_model)

# Optimize and save the model

# Convert the model using DEFAULT optimizations: https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/lite/python/lite.py#L91-L130
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_quant_model = converter.convert()
tflite_model_quant_file = tflite_models_dir / "model-tiny.tflite"
tflite_model_quant_file.write_bytes(tflite_quant_model)

# Load TFLite model and allocate tensors.
tflite_model_file = '/content/gdrive/MyDrive/tiny-model/model-tiny.tflite'                 # Change the filename here for Model 2 and 3


interpreter = tf.lite.Interpreter(model_path=tflite_model_file)
interpreter.allocate_tensors()

input_index = interpreter.get_input_details()[0]["index"]
output_index = interpreter.get_output_details()[0]["index"]

Bad reuse of datas

  # split the data
ignore_1,the_data,ignore_2,the_label = train_test_split(FOLD_K, us8k_df)

Validate the new tiny model

predictions = []
test_labels, test_sound = [], []

for a in range(the_label.shape[0]):
  
  this_data=the_data[a]

  this_data=np.expand_dims(this_data, axis=0)
  
#Slicing the data
  this_label=the_label[a]

#######Solution from: https://stackoverflow.com/questions/67068742/valueerror-cannot-set-tensor-dimension-mismatch-got-3-but-expected-4-for-inpu

  interpreter.set_tensor(input_index, this_data)
#######

  interpreter.invoke()
  predictions.append(interpreter.get_tensor(output_index))
  test_labels.append(this_label)

Score the data

#The bad done one

score = 0
for item in range(the_label.shape[0]):
  #prediction=np.argmax(predictions[item])
  prediction=predictions[item]
  label = test_labels[item]
  result_and = np.logical_and(label, prediction) 
  #if prediction==label:
  if result_and.any():
    score=score+1

print("Out of ",the_label.shape[0]," predictions I got " + str(score) + " correct")

#Correct one?

the_score=0
for item in range(the_label.shape[0]):
  #prediction=np.argmax(predictions[item])
  prediction=np.argmax(predictions[item])
  label = np.argmax(test_labels[item])
  print(prediction)
  print(label)
  print("-----------------------")
  if label==prediction:
    the_score=the_score+1

print("Out of ",the_label.shape[0]," predictions I got " + str(the_score) + " correct")


I adapted the code, opened/broke functions and I searched my problems and errors in google and stackoverflow.

Can you help me?

0

There are 0 best solutions below