I am doing a facemask detector using yolo v3. After I finished the training process by Colab, I have download the model for testing using opencv by python.
import cv2
import numpy as np
import matplotlib.pyplot as plt
cap = cv2.VideoCapture(1)
classes = ['withMask','withoutMask']
net = cv2.dnn.readNetFromDarknet('yolov3_custom.cfg',r"Downloads\yolov3_custom_4000.weights")
cap = cv2.VideoCapture(0)
while 1:
_, img = cap.read()
img = cv2.resize(img,(1280,720))
hight,width,_ = img.shape
blob = cv2.dnn.blobFromImage(img, 1/255,(416,416),(0,0,0),swapRB = True,crop= False)
net.setInput(blob)
output_layers_name = net.getUnconnectedOutLayersNames()
layerOutputs = net.forward(output_layers_name)
boxes =[]
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
score = detection[5:]
class_id = np.argmax(score)
confidence = score[class_id]
if confidence > 0.7:
center_x = int(detection[0] * width)
center_y = int(detection[1] * hight)
w = int(detection[2] * width)
h = int(detection[3]* hight)
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x,y,w,h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes,confidences,.5,.4)
boxes =[]
confidences = []
class_ids = []
for output in layerOutputs:
for detection in output:
score = detection[5:]
class_id = np.argmax(score)
confidence = score[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * hight)
w = int(detection[2] * width)
h = int(detection[3]* hight)
x = int(center_x - w/2)
y = int(center_y - h/2)
boxes.append([x,y,w,h])
confidences.append((float(confidence)))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes,confidences,.8,.4)
font = cv2.FONT_HERSHEY_PLAIN
colors = np.random.uniform(0,255,size =(len(boxes),3))
if len(indexes)>0:
for i in indexes.flatten():
x,y,w,h = boxes[i]
label = str(classes[class_ids[i]])
confidence = str(round(confidences[i],2))
color = colors[i]
cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
cv2.putText(img,label + " " + confidence, (x,y+400),font,2,color,2)
cv2.imshow('img',img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
After I ran this program using cmd, it gave the error below.
Traceback (most recent call last):
File "test_1.py", line 7, in net = cv2.dnn.readNetFromDarknet('yolov3_custom.cfg',r"Downloads\yolov3_custom_4000.weights") cv2.error: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\darknet\darknet_importer.cpp:217: error: (-212:Parsing error) Failed to parse NetParameter file: Downloads\yolov3_custom_4000.weights in function 'cv::dnn::dnn4_v20220524::readNetFromDarknet'
Anyone can help?
I expected I can look for the accuracy of the model.
try to use absolute path from
.cfg
and.weighs
and try to set
cap
only once, example: cap = cv2.VideoCapture(0)