def plot_pca_scatter3D(pca_values, x, y):
for name, label in [('1', 0), ('2', 1), ('3', 2), ('4', 3)]:
ax.text3D(pca_values[y == label, 0].mean(),
pca_values[y == label, 1].mean() + 1.5,
pca_values[y == label, 2].mean(), name,
horizontalalignment='center',
bbox=dict(alpha=.5, edgecolor='w', facecolor='w'))
# Reorder the labels to have colors matching the cluster results
y = np.choose(y, [1, 2, 0]).astype(np.float)
ax.scatter(pca_values[:, 0], pca_values[:, 1], pca_values[:, 2], c=y, cmap=plt.cm.spectral,
edgecolor='k')
ax.w_xaxis.set_ticklabels([])
ax.w_yaxis.set_ticklabels([])
ax.w_zaxis.set_ticklabels([])
plt.show()
this is my plot scatter function. but when I try to perform it.
from sklearn.decomposition import PCA
pca = PCA(n_components=300)
X_pca = pca.fit_transform(X)
plot_pca_scatter3D(X_pca, X, Y)
I am getting this error message Cannot cast array data from dtype('float64') to dtype('int64') according to the rule 'safe'
My datatypes: X_pca (float 64) Size (944,300) Y (Series object of pandas.core.series module) Size (944,) X (dataFrame) Size (944,600)
What to do ?