I have 2 data frames, which are different to each other and I need to do a correlation on those using the cor.test()
function in R
.
My data frame has the same number of columns but the rows are different to each other.
For instance, after melting (using the melt()
function from the reshape
package) my data frames look like the following:
Each of these data frames has 84 columns and varying row count:
head(df1)
ID variable value
ENSG60 AE02_ID 7.408430
ENSG53 AE02_ID 0.000000
ENSG94 AE02_ID 2.556464
ENSG49 AE02_ID 0.032384
ENSG9 AE02_ID 0.000000
and head(df2)
:
ID variable value
ENSG3 AE02_ID 0.000001
ENSG1 AE02_ID 0.329180
ENSG8 AE02_ID 0.000000
ENSG10 AE02_ID 29.157761
ENSG20 AE02_ID 0.633884
I used the following R
script for my analysis where it returns the Spearman coefficient:
result <- apply(mat1, 2, function(col_mat1){
apply(mat2, 2, function(col2, col1) {
cor.test(col2, col1, method = "spearman")$estimate # this returns the p-value of the cor.test
}, col1=col_mat1)
})
And when I tried to add a p.value to the above function as:
result <- apply(mat1, 2, function(col_mat1){
apply(mat2, 2, function(col2, col1) {
cor.test(col2, col1, method = "spearman")cbind($estimate,$p.value) # this returns the p-value of the cor.test
}, col1=col_mat1)
})
it's returning an error message.
Any suggestions or help would be great. Thank you. The desired out is something like this,
df1 df2 Coefficient P.value
ENSG60 ENSG3 0.1828591281 0.00546547
ENSG53 ENSG1 0.021038182 0.021038182
ENSG94 ENSG8 -0.0683044433 0.000657
You haven't given a reproducible example, but I think your inner function needs to be modified slightly (e.g.) as follows: