I have about 200 files having long header lines that starts with "#" and then records with 4 columns like the following:
file_1.vcf
##some_comments that span many lines
##some_comments that span many lines
#CRHOM POS REF ALT
chr1 111 A G
chr2 222 G T
chrY 99999 A C
file_2.vcf
##some_comments that span many lines
##some_comments that span many lines
#CRHOM POS REF ALT
chr2 444 G T
chr2 222 G T
chrY 7473 C A
For this simple example with only 2 vcf, the expected total number of records is 5 records.
Each of the files contain a million or so records and I am trying to count how many total number of records they are with one condition that a duplicate record appeared in any other vcf file must be counted only once. How can I accomplish this, I attempt this in Python but this stuck for very long time:
import os
from pathlib import Path
import vcf
path_gdc_data = Path(os.getcwd()+"/all_vcfs/")
non_dup = []
count += 1
for i, vcf_file in enumerate(path_gdc_data.rglob("*.vcf")):
vcf_reader = vcf.Reader(filename=str(vcf_file))
for rec in vcf_reader:
if (rec.CHROM,rec.POS, rec.REF, rec.ALT) not in indels_coord_uniq:
non_dup_records.append((rec.CHROM, rec.POS))
count += 1
print(f"Total num of non dup in all vcf are {count}")
Note1: I include pandas and Dataframe tags in my question to see if pandas would be more efficient solution for this.
Note2: Each individual file can not have duplicated records and each file is sorted.
Sample vcf file:
##fileformat=VCFv4.0
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=1000GenomesPilot-NCBI36
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTCT G,GTACT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
Many thanks in advance.
Another method using
Pandas
:Example:
Apply this modification on the code above and run: