I am running some experiments on MATLAB, and I have noticed that, keeping the period fixed, increasing the sampling rate of a sine signal causes the different shifted waveforms in the Fourier transform to become more distinct. They get further apart, I think this makes sense because as the sampling rate increases, the difference between the Nyquist rate and the sampling rate increases too, which creates an effect opposed to aliasing. I have also noticed that the amplitude of the peaks of the transform also increase as the sampling rate increases. Even the DC component (frequency = 0) changes. It's shown as being 0 at some sampling rate, but when increasing the sampling rate it's not 0 anymore.
All the sampling rates are above the Nyquist rate. It seems odd to me that the Fourier transform changes its shape, since according to the sampling theorem, the original signal can be recovered if the sampling rate is above the Nyquist rate, no matter if it's 2 times the nyquist rate or 20 times. Wouldn't a different Fourier waveform mean a different recovered signal?
I am wondering, formally, what's the impact of the sampling rate
Thank you.
You are seeing several things when you increase the sample rate:
most (forward) FFT implementations have an implicit scaling factor of N (sometimes sqrt(N)) - if you're increasing your FFT size as you increase the sample rate (i.e. keeping the time window constant) then the apparent magnitude of the peaks in the FFT will increase. When calculating absolute magnitude values you would normally need to take this scaling factor into account.
I'm guessing that you are not currently applying a window function prior to the FFT - this will result in "smearing" of the spectrum, due to spectral leakage, and the exact nature of this will be very dependent on the relationship between sample rate and the frequencies of the various components in your signal. Apply a window function and the spectrum should look a lot more consistent as you vary the sample rate.