I've been using emcee to sampel my parameter, at first my prior were all uniform
def logprior_BAO(theta):
A, B, C, D, epsilon, rd = theta
if A > 0 and B > 0 and C > 0 and D > 0 and epsilon > -5 and 146.96<=rd<=147.58:
return 0.0
return -np.inf
and it work perfectly fine. then, I change the rd prior to Gaussian,
def logprior_BAO(theta):
A, B, C, D, epsilon, rd = theta
#flat priors
if not A > 0 and B > 0 and C > 0 and D > 0 and epsilon > -5:
return -np.inf
#gaussian prior rd
mu = 147.27
sigma = 0.31
return np.log(1.0/(np.sqrt(2*np.pi)*sigma))-0.5*(rd-mu)**2/sigma**2
and the program gives me this error
ValueError Traceback (most recent call last)
<ipython-input-9-b9ee20e97036> in <module>
3 move = emcee.moves.StretchMove(a=a_parameter)
4 sampler = emcee.EnsembleSampler(nwalker, ndims, logposterior,args=argslist, moves=move)
----> 5 sampler.run_mcmc(initial, nsteps, progress=True)
~\anaconda3\lib\site-packages\emcee\ensemble.py in run_mcmc(self, initial_state, nsteps, **kwargs)
382
383 results = None
--> 384 for results in self.sample(initial_state, iterations=nsteps, **kwargs):
385 pass
386
~\anaconda3\lib\site-packages\emcee\ensemble.py in sample(self, initial_state, log_prob0, rstate0, blobs0, iterations, tune, skip_initial_state_check, thin_by, thin, store, progress)
283 state.blobs = blobs0
284 if state.log_prob is None:
--> 285 state.log_prob, state.blobs = self.compute_log_prob(state.coords)
286 if np.shape(state.log_prob) != (self.nwalkers,):
287 raise ValueError("incompatible input dimensions")
~\anaconda3\lib\site-packages\emcee\ensemble.py in compute_log_prob(self, coords)
454 # Check for log_prob returning NaN.
455 if np.any(np.isnan(log_prob)):
--> 456 raise ValueError("Probability function returned NaN")
457
458 return log_prob, blob
ValueError: Probability function returned NaN
Could anybody tell me why this is happening, and how to fix it? I will appreciate your answer, thanks