I have to solve the following system:
X'(t) = -D(t)x(t)+μ(s(t), p(t))x(t);
S'(t) = D(t)(s(t)^in - s(t)) - Yxsμ(s(t), p(t))x(t)
p'(t) = -D(t)p(t)+(aμ(s(t), p(t))+b)x(t)
where
μ(s(t), p(t)) = Μmax ((1 - (p(t)/pm))s(t)) / (km+s(t)+(s(t) ^ 2)/ki)
where Yxs, a,b, Mmax, Pm, km, ki are constant variables, then I have to linearizate the system and find the balance Points of thiw system. any suggestion how to do it with Matlab or Mathematica??
Matlab can help with some steps, but there might be few where you do have to write down some equations yourself. To start with a simple side note: Matlabs ODE45 function allows to simulate any function of the form dx/dt = f(x,u), regardless of how non-linear or time variant they might become.
to linearize such a system, you need to derive a jacobian matrix and substitute the linearization point in this matrix. This linearization point is any point where all state derivatives equal 0, it does not need to be a balance point. However, it is desired to have it a balance point as this means the linearization point is a stable equilibrium. So in MATLAB:
Depending on the non-linear complexity and the chosen linearization point, the linearized system might only within acceptable bounds from the actual system for a very tight region, so be aware of that.