I'm trying to serve attention_ocr model on docker with tensorflow/serving image.
First, I trained this model with own dataset and get a good result with demo_inference.py
So, I'm export the trained model with export_model.py
python export_model.py --checkpoint=model.ckpt-111111 --export_dir=/tmp/mydir
Then, run docker container for serving the model.
docker run -it --rm -p 8501:8501 -v /tmp/mydir:/models/aocr -e MODEL_NAME=aocr --gpus all tensorflow/serving
And this is my python client script.
data_dir = '/root/src/models/research/attention_ocr/python/datasets/data/demo/'
data_files = os.listdir(data_dir)
with open(data_dir + "0.jpg", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
## Some requests I tried ##
# predict_request = '{"examples": [{"inputs": ["%s"]}]}' % encoded_string
# predict_request = '{"examples": [{"inputs": "%s"}]}' % encoded_string
predict_request = '{"examples": [{"inputs": {"b64": ["%s"]}}]}' % encoded_string
r = requests.post('http://MY_IP_ADDR:8501/v1/models/aocr:classify', data=predict_request)
print(r.text)
Result.. "error": "Expected one or two output Tensors, found 17"
This is the first time using tensorflow/serving. I can't handle this error.
Please help this newbie.. Thanks in advance.
Thank you for reporting this issue. I filed a bug (#9264) on Github on your behalf. The issue is that the default signature includes all the endpoints that the model provides. If you want to use the Serving's Classification API, we need to modify the export_model script to export just the 2 tensors expected by the classification API (i.e., predictions and scores). In the meantime, you can use the Predict API, which supports an arbitrary number of output tensors. Please note that when using the predict API via GRPC you can specify output_filter, but the RESTful API does not have that option, so the response is pretty heavy, since it sends back all the attention masks and the raw image. In case somebody else is trying to figure out how to run inference, here are steps that worked for me.
Note that the
--batch_size=1
is needed due to a bug inmodel_export.py
. I'll take care of it when send the PR for the signature issue.Please note that the path needs to contain a version number
/models/aocr/1
. If you don't append/1
the server complains that it could not find any versions.Here are the results
Here is the code:
send_serving_request.py