I am currently learning how to use OPTICS in sklearn. I am inputting a numpy array of (205,22). I am able to get plots out of it, but I do not understand how I am getting a 2d plot out of multiple dimensions and how I am supposed to read it. I more or less understand the reachability plot, but the rest of it makes no sense to me. Can someone please explain what is happening. Is the function just simplifying the data to two dimensions somehow? Thank you

explanation of sklearn optics plot
831 Views Asked by Nikita Belooussov At
1
There are 1 best solutions below
Related Questions in PYTHON
- new thread blocks main thread
- Extracting viewCount & SubscriberCount from YouTube API V3 for a given channel, where channelID does not equal userID
- Display images on Django Template Site
- Difference between list() and dict() with generators
- How can I serialize a numpy array while preserving matrix dimensions?
- Protractor did not run properly when using browser.wait, msg: "Wait timed out after XXXms"
- Why is my program adding int as string (4+7 = 47)?
- store numpy array in mysql
- how to omit the less frequent words from a dictionary in python?
- Update a text file with ( new words+ \n ) after the words is appended into a list
- python how to write list of lists to file
- Removing URL features from tokens in NLTK
- Optimizing for Social Leaderboards
- Python : Get size of string in bytes
- What is the code of the sorted function?
Related Questions in SCIKIT-LEARN
- How to use meshgrid with large arrays in Matplotlib?
- Enforcing that inputs sum to 1 and are contained in the unit interval in scikit-learn
- scikit-learn preperation
- Python KNeighborsClassifier
- How to interpret scikit's learn confusion matrix and classification report?
- svmlight / libsvm format
- Scikit-learn: overriding a class method in a classifier
- Memory Error with Classifier fit and partial_fit
- Difference between weka tool's correlation coefficient and scikit learn's coefficient of determination score
- Peak fitting with gaussian mixure model (Scikit); how to sample from a discrete pdf?
- sklearn LDA unique labels issue
- Break up Random forest classification fit into pieces in python?
- How to reuse pickled objects in python?
- Scikit Learn Multilabel Classification Using Out Of Core
- Scikit-learn Random Forest taking up too much memory
Related Questions in CLUSTER-ANALYSIS
- How to cluster a set of strings?
- What clustering algorithms can I consider for graph?
- Center of clusteres in rapidminer
- Spectral clustering with Similarity matrix constructed by jaccard coefficient
- Selecting initial centroids in Kmeans in R
- kmeans clustering on the basis of fixed number of variables out of all variables
- MinHashing vs SimHashing
- knn predictions with Clustering
- How do I choose a linkage method for Hierarchical Agglomerative Clustering?
- Affinity Propagation (sklearn) - strange behavior
- How to extract cluster centres from agnes for inputting into kmeans?
- Is it possible to estimate at survey data at cluster level?
- How to explain a higher percentage of point variability using kmeans clustering?
- Mahout clustering: How to retrieve the name of a named vector
- String clustering using matlab?
Related Questions in OPTICS-ALGORITHM
- optics/dbscan/hdbscan in RStudio
- Optimal Spectrum Allocation with largest capacity and minimal Frequency Wastage
- Priority Queue in R for OPTICS implementation
- OPTICS Clustering algorithm. How to get the best epsilon
- OPTICS algorithm with different epsilons on different axes
- How to get different clusters using OPTICS in python by varying the parameter xi?
- I am having a hard time understanding the concept of Ordering in OPTICS Clustering algorithm
- How to plot OPTICS clustering results using seaborn?
- matlab solving numerical differential equations [pic]
- Unable to load java class from w3c
- ELKI Maven OPTICS
- Density clustering around a separate point - Python
- Is there a way to reuse the output of the Optics algorithm for Optics Xi in ELKI?
- explanation of sklearn optics plot
- Plotting hyperboloid and ellipsoid in python
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
From the sklearn user guide:
The reachability distances generated by OPTICS allow for variable density extraction of clusters within a single data set. As shown in the above plot, combining reachability distances and data set ordering_ produces a reachability plot, where point density is represented on the Y-axis, and points are ordered such that nearby points are adjacent. ‘Cutting’ the reachability plot at a single value produces DBSCAN like results; all points above the ‘cut’ are classified as noise, and each time that there is a break when reading from left to right signifies a new cluster.
the other three plots are a visual representation of the actual clusters found by three different algorithms.
as you can see in the OPTICS Clustering plot there are two high density clusters (blue and cyan) the gray crosses acording to the reachability plot are classify as noise because of the low xi value
in the DBSCAN clustering with eps = 0.5 everithing is considered noise since the epsilon value is to low and the algorithm can not found any density points.
Now it is obvious that in the third plot the algorithm found just a single cluster because of the adjustment of the epsilon value and everything above the 2.0 line is considered noise.
please refer to the user guide: