I am working with an ordinal outcome variable (state_prev) measuring sexual violence prevalence, using a generalized ordered regression.
I fitted the model: sup_state <- vglm(state_prev ~ ext_sup + ext_f + ANIpC + GDPpC + unemployment + population, family = cumulative(parallel = FALSE, reverse = FALSE), data = SVAC_ext_supp)
As I am doing an analysis in a conflict context I want to add clustered standard errors (variable: conflictid). But i was unable to do so. Can anyone help implementing clustered standard errors in a generalized ordered regression?
Thanks so much!
- method: generalized ordered regression
- model:
sup_state <- vglm(state_prev ~ ext_sup + ext_f + ANIpC + GDPpC + unemployment + population, family = cumulative(parallel = FALSE, reverse = FALSE), data = SVAC_ext_supp)
coeftest() (package sandwich) is not comptible with a vglm
se <- coeftest(base_state, vcov = vcovCL, cluster = ~conflictid)
ordLORgee() (package multgee) gets an error message: vector memory exhausted (limit reached?)
se <- ordLORgee(formula = state_prev ~ factor(ext_sup) + factor(ext_f), link = "logit",
data = SVAC_ext_supp, id = conflictid, LORstr = "uniform").
robcov does not work either (package rms). i get:
Error in h(simpleError(msg, call)) : error in evaluating the argument 'x' in selecting a method for function 'as.matrix': $ operator not defined for this S4 class
robcov(base_state, cluster=SVAC_data$conflictid)
I don't want to use polr() (package mass) because i cannot satisfy the proportional odds assumption. If i do, i get the error:
Re-fitting to get Hessian Error in svd(X) : infinite or missing values in 'x'
base_state <- polr(as.factor(state_prev) ~ ext_sup + ext_f + ANIpC + GDPpC + poverty + unemployment + population, data = SVAC_ext_supp)
se <- coeftest(base_state, vcov = vcovCL, cluster = ~conflictid)
lm.cluster() is not adequate for ordinal outcomes
the only thing that works is a binary sexual violence outcome variable and using glm()
mod <- glm(SV_bin ~ ext_sup + ext_f, family = binomial(link = "logit"), data = SVAC_ext_supp)
vcov_cluster <- vcovCL(mod, cluster = ~conflictid)
coeftest(m, vcov. = vcov_cluster)
but has anyone an idea how i can implement clustered standard errors into a generalized ordered regression?