Getting error in Simple RNN model architecture while using Embedding layer

18 Views Asked by At

I am using this architecture

model=Sequential()  # units are nodes are added
model.add(Embedding(input_dim=1000,output_dim=2,input_length=50)) # embedding converts 
vectors with semantic meaning
model.add(SimpleRNN(units=32,return_sequences=False))
model.add(Dense(1,activation='sigmoid'))
model.summary()
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=["ACC"])
r=model.fit(x_train,y_train,epochs=5,validation_data=(x_test,y_test)) 

but getting this error

indices[0,47] = 38286 is not in [0, 10001)
     [[{{node sequential_7/embedding_6/embedding_lookup}}]] 
[Op:__inference_train_function_12881] 

why??

Tensorflow version : 2.15.0

0

There are 0 best solutions below