Getting this error while importing and using .onnx model

127 Views Asked by At

Code:

import cv2
import numpy as np
import math

def fourPointsTransform(frame, vertices):
    vertices = np.asarray(vertices)
    outputSize = (100, 32)
    targetVertices = np.array([
        [0, outputSize[1] - 1],
        [0, 0],
        [outputSize[0] - 1, 0],
        [outputSize[0] - 1, outputSize[1] - 1]], dtype="float32")

    rotationMatrix = cv2.getPerspectiveTransform(vertices, targetVertices)
    result = cv2.warpPerspective(frame, rotationMatrix, outputSize)
    return result


def decodeText(scores):
  text = ""
  alphabet = "0123456789abcdefghijklmnopqrstuvwxyz"
  for i in range(scores.shape[0]):
      c = np.argmax(scores[i][0])
      if c != 0:
          text += alphabet[c - 1]
      else:
          text += '-'

  # adjacent same letters as well as background text must be removed to get the final output
  char_list = []
  for i in range(len(text)):
      if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):
          char_list.append(text[i])
  return ''.join(char_list)


def decodeBoundingBoxes(scores, geometry, scoreThresh):
    detections = []
    confidences = []

    ############ CHECK DIMENSIONS AND SHAPES OF geometry AND scores ############
    assert len(scores.shape) == 4, "Incorrect dimensions of scores"
    assert len(geometry.shape) == 4, "Incorrect dimensions of geometry"
    assert scores.shape[0] == 1, "Invalid dimensions of scores"
    assert geometry.shape[0] == 1, "Invalid dimensions of geometry"
    assert scores.shape[1] == 1, "Invalid dimensions of scores"
    assert geometry.shape[1] == 5, "Invalid dimensions of geometry"
    assert scores.shape[2] == geometry.shape[2], "Invalid dimensions of scores and geometry"
    assert scores.shape[3] == geometry.shape[3], "Invalid dimensions of scores and geometry"
    height = scores.shape[2]
    width = scores.shape[3]
    for y in range(0, height):

        # Extract data from scores
        scoresData = scores[0][0][y]
        x0_data = geometry[0][0][y]
        x1_data = geometry[0][1][y]
        x2_data = geometry[0][2][y]
        x3_data = geometry[0][3][y]
        anglesData = geometry[0][4][y]
        for x in range(0, width):
            score = scoresData[x]

            # If score is lower than threshold score, move to next x
            if (score < scoreThresh):
                continue

            # Calculate offset
            offsetX = x * 4.0
            offsetY = y * 4.0
            angle = anglesData[x]

            # Calculate cos and sin of angle
            cosA = math.cos(angle)
            sinA = math.sin(angle)
            h = x0_data[x] + x2_data[x]
            w = x1_data[x] + x3_data[x]

            # Calculate offset
            offset = ([offsetX + cosA * x1_data[x] + sinA * x2_data[x], offsetY - sinA * x1_data[x] + cosA * x2_data[x]])

            # Find points for rectangle
            p1 = (-sinA * h + offset[0], -cosA * h + offset[1])
            p3 = (-cosA * w + offset[0], sinA * w + offset[1])
            center = (0.5 * (p1[0] + p3[0]), 0.5 * (p1[1] + p3[1]))
            detections.append((center, (w, h), -1 * angle * 180.0 / math.pi))
            confidences.append(float(score))

    # Return detections and confidences
    return [detections, confidences]

confThreshold = 0.5
nmsThreshold = 0.4
inpWidth = 320
inpHeight = 320
modelDetector = "frozen_east_text_detection.pb"
modelRecognition = "crnn.onnx"
# Load network
detector = cv2.dnn.readNet(modelDetector)
recognizer = cv2.dnn.readNetFromONNX(modelRecognition)

# Create a new named window
kWinName = "EAST: An Efficient and Accurate Scene Text Detector"
cv2.namedWindow(kWinName, cv2.WINDOW_NORMAL)
outNames = []
outNames.append("feature_fusion/Conv_7/Sigmoid")
outNames.append("feature_fusion/concat_3")

# Open a video file or an image file or a camera stream
#cap = cv2.VideoCapture(args2.input if args2.input else 0)

#tickmeter = cv2.TickMeter()
# while cv2.waitKey(1) < 0:
#     # Read frame
#     hasFrame, frame = cap.read()
#     if not hasFrame:
#         cv2.waitKey()
#         break
frame=cv2.imread("sign.jpg")
#print(frame)
# Get frame height and width
height_ = frame.shape[0]
width_ = frame.shape[1]
rW = width_ / float(inpWidth)
rH = height_ / float(inpHeight)

# Create a 4D blob from frame.
blob = cv2.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False)

# Run the detection model
detector.setInput(blob)

#tickmeter.start()
outs = detector.forward(outNames)
#tickmeter.stop()

# Get scores and geometry
scores = outs[0]
geometry = outs[1]
[boxes, confidences] = decodeBoundingBoxes(scores, geometry, confThreshold)

# Apply NMS
indices = cv2.dnn.NMSBoxesRotated(boxes, confidences, confThreshold, nmsThreshold)
for i in indices:
    # get 4 corners of the rotated rect
    vertices = cv2.boxPoints(boxes[i])
    # scale the bounding box coordinates based on the respective ratios
    for j in range(4):
        vertices[j][0] *= rW
        vertices[j][1] *= rH


    # get cropped image using perspective transform
    if modelRecognition:
        cropped = fourPointsTransform(frame, vertices)
        cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2GRAY)

        # Create a 4D blob from cropped image
        blob = cv2.dnn.blobFromImage(cropped, size=(100, 32), mean=127.5, scalefactor=1 / 127.5)
        recognizer.setInput(blob)

        # # Run the recognition model
        # tickmeter.start()
        result = recognizer.forward()
        # tickmeter.stop()

        # # decode the result into text
        wordRecognized = decodeText(result)
        cv2.putText(frame, wordRecognized, (int(vertices[1][0]), int(vertices[1][1])), cv2.FONT_HERSHEY_SIMPLEX,0.5, (255, 0, 0))

    for j in range(4):
        p1 = (int(vertices[j][0]), int(vertices[j][1]))
        p2 = (int(vertices[(j + 1) % 4][0]), int(vertices[(j + 1) % 4][1]))
        cv2.line(frame, p1, p2, (0, 0, 255), 5)

# Put efficiency information
#label = 'Inference time: %.2f ms' % (tickmeter.getTimeMilli())
#cv2.putText(frame, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))

# Display the frame
cv2.imshow(kWinName, frame)
cv2.waitKey()

Error:

''' [ERROR:[email protected]] global D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\onnx\onnx_importer.cpp (1021) cv::dnn::dnn4_v20220524::ONNXImporter::handleNode DNN/ONNX: ERROR during processing node with 2 inputs and 1 outputs: [Squeeze]:(onnx_node!/Squeeze) from domain='ai.onnx' Traceback (most recent call last): File "c:\Users\Gundeti Narahari\Downloads\frozen_east_text_detection\p.py", line 100, in <module> recognizer = cv2.dnn.readNetFromONNX(modelRecognition) cv2.error: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\onnx\onnx_importer.cpp:1040: error: (-2:Unspecified error) in function 'cv::dnn::dnn4_v20220524::ONNXImporter::handleNode'

Node [[email protected]]:(onnx_node!/Squeeze) parse error: OpenCV(4.6.0) D:\a\opencv-python\opencv-python\opencv\modules\dnn\src\onnx\onnx_importer.cpp:2464: error: (-215:Assertion failed) node_proto.input_size() == 1 in function 'cv::dnn::dnn4_v20220524::ONNXImporter::parseSqueeze'

'''

I wanted to do text detection and recognition with frozen east text detection and recognize it using crnn.

0

There are 0 best solutions below