How can I extract values from a text file?

627 Views Asked by At

I created an input text file whereby different user input can be used each time the text file is updated.I am trying to analyze a simple truss and the input file consists of properties of the truss.I am able to read the file but the code is not extracting the values from the text file.The text input file is below;

nodes = {1:[0,10], 2:[0,0], 3:[10,5]}
elements = { 1:[2,3], 2:[1,3] }
densities = {1:0.284, 2:0.284}
stiffnesses= {1:30.0e6, 2:30.0e6}
areas= {1:1.0, 2:2.0}
degrees_of_freedom = { 1:[1,2], 2:[3,4], 3:[5,6] }
restrained_dofs = [1, 2, 3, 4]
forces = { 1:[0,0], 2:[0,0], 3:[0,-200] }

I am trying to integrate the values above from a text file into the code below;

import numpy as np 
from numpy.linalg import norm
from scipy.linalg import eigh
import matplotlib.pyplot as plt 
# read input file 
def setup():
    # define the coordinate system
    x_axis = np.array([1,0])
    y_axis = np.array([0,1])
    filepath = 'input.txt'
    with open(filepath) as fp:
       line = fp.readline()
       cnt = 1
       while line:
           line = fp.readline()
           cnt += 1

    ndofs = 2 * len(nodes)

    # assertions
    assert len(densities) == len(elements) == len(stiffnesses) == len(areas)
    assert len(restrained_dofs) < ndofs
    assert len(forces) == len(nodes)

    return {  'x_axis':x_axis, 'y_axis':y_axis, 'nodes':nodes, 'degrees_of_freedom':degrees_of_freedom,   \
              'elements':elements, 'restrained_dofs':restrained_dofs, 'forces':forces, 'ndofs':ndofs,     \
              'densities':densities, 'stiffnesses':stiffnesses, 'areas':areas }

def plot_nodes(nodes):
    x = [i[0] for i in nodes.values()]
    y = [i[1] for i in nodes.values()]
    size = 400
    offset = size/4000.
    plt.scatter(x, y, c='y', s=size, zorder=5)
    for i, location in enumerate(zip(x,y)):
        plt.annotate(i+1, (location[0]-offset, location[1]-offset), zorder=10)

def points(element, properties):
    elements = properties['elements']
    nodes = properties['nodes']
    degrees_of_freedom = properties['degrees_of_freedom']

    # find the nodes that the lements connects
    fromNode = elements[element][0]
    toNode = elements[element][1]

    # the coordinates for each node
    fromPoint = np.array(nodes[fromNode])
    toPoint = np.array(nodes[toNode])

    # find the degrees of freedom for each node
    dofs = degrees_of_freedom[fromNode]
    dofs.extend(degrees_of_freedom[toNode])
    dofs = np.array(dofs)

    return fromPoint, toPoint, dofs

def draw_element(fromPoint, toPoint, element, areas):
    x1 = fromPoint[0]
    y1 = fromPoint[1]
    x2 = toPoint[0]
    y2 = toPoint[1]
    plt.plot([x1, x2], [y1, y2], color='g', linestyle='-', linewidth=7*areas[element], zorder=1)

def direction_cosine(vec1, vec2):
    return np.dot(vec1,vec2) / (norm(vec1) * norm(vec2))

def rotation_matrix(element_vector, x_axis, y_axis):
    # find the direction cosines
    x_proj = direction_cosine(element_vector, x_axis)
    y_proj = direction_cosine(element_vector, y_axis)
    return np.array([[x_proj,y_proj,0,0],[0,0,x_proj,y_proj]])

def get_matrices(properties):
    # construct the global mass and stiffness matrices
    ndofs    = properties['ndofs']
    nodes    = properties['nodes']
    elements = properties['elements']
    forces   = properties['forces']
    areas    = properties['areas']
    x_axis   = properties['x_axis']
    y_axis   = properties['y_axis']

    plot_nodes(nodes)

    M = np.zeros((ndofs,ndofs))
    K = np.zeros((ndofs,ndofs))

    for element in elements:
        # find the element geometry
        fromPoint, toPoint, dofs = points(element, properties)
        element_vector = toPoint - fromPoint

        draw_element(fromPoint, toPoint, element, areas)   # display the element

        # find element mass and stiffness matrices
        length = norm(element_vector)
        rho    = properties['densities'][element]
        area   = properties['areas'][element]
        E      = properties['stiffnesses'][element]

        Cm = rho * area * length / 6.0
        Ck = E * area / length

        m = np.array([[2,1],[1,2]]) 
        k = np.array([[1,-1],[-1,1]])

        # find rotated mass and stiffness element matrices
        tau = rotation_matrix(element_vector, x_axis, y_axis)
        m_r = tau.T.dot(m).dot(tau)
        k_r = tau.T.dot(k).dot(tau)

        # change from element to global coordinates
        index = dofs-1
        B = np.zeros((4,ndofs))
        for i in range(4):
            B[i,index[i]] = 1.0
        M_rG = B.T.dot(m_r).dot(B)
        K_rG = B.T.dot(k_r).dot(B)

        M += Cm * M_rG
        K += Ck * K_rG

    # construct the force vector
    F = []
    for f in forces.values():
        F.extend(f)
    F = np.array(F)

    # remove the restrained dofs
    remove_indices = np.array(properties['restrained_dofs']) - 1
    for i in [0,1]:
        M = np.delete(M, remove_indices, axis=i)
        K = np.delete(K, remove_indices, axis=i)        

    F = np.delete(F, remove_indices)

    return M, K, F

def get_stresses(properties, X):
    x_axis   = properties['x_axis']
    y_axis   = properties['y_axis']
    elements = properties['elements']
    E        = properties['stiffnesses']

    # find the stresses in each member
    stresses = []
    for element in elements:
        # find the element geometry
        fromPoint, toPoint, dofs = points(element, properties)
        element_vector = toPoint - fromPoint

        # find rotation matrix
        tau = rotation_matrix(element_vector, x_axis, y_axis)
        global_displacements = np.array([0,0,X[0],X[1]])
        q = tau.dot(global_displacements)

        # calculate the strains and stresses
        strain = (q[1] - q[0]) / norm(element_vector)
        stress = E[element] * strain
        stresses.append(stress)

    return stresses

def show_results(X, stresses, frequencies):
    print ('Nodal Displacments:', X)
    print ('Stresses:', stresses)
    print ('Frequencies:', frequencies)
    print ('Displacment Magnitude:', round(norm(X),5))
    print


def main():
    # problem setup
    properties = setup()

    # determine the global matrices
    M, K, F = get_matrices(properties)

    # find the natural frequencies
    evals, evecs = eigh(K,M)
    frequencies = np.sqrt(evals)

    # calculate the static displacement of each element
    X = np.linalg.inv(K).dot(F)

    # determine the stresses in each element
    stresses = get_stresses(properties, X)

    # output results
    show_results(X, stresses, frequencies)

    plt.title('Analysis of Truss Structure')
    plt.show()



if __name__ == '__main__':
    main()
1

There are 1 best solutions below

0
On

Executing code from an input file is a big security risk and a bad habit. If you insist on doing it, 'exec' will run text input as code.

However, a cleaner way would be to read the file as data into a dictionary, then use the dictionary elements instead of actual variables, and you're returning the dictionary already. Something like:

filepath = 'input.txt'
d = {}
with open(filepath) as fp:
    for line in fp:
        (key, val) = line.replace(" ", "").strip().split('=')
        d[key] = val
print(d)

ndofs = 2 * len(d['nodes'])
assert(...)
assert(...)
assert(...)
return(d)

The multiple cleanups are there to take your input file as is. If you can clean it up a little (no '=', more consistent spacing) that line can be simplified.