I created an input text file whereby different user input can be used each time the text file is updated.I am trying to analyze a simple truss and the input file consists of properties of the truss.I am able to read the file but the code is not extracting the values from the text file.The text input file is below;
nodes = {1:[0,10], 2:[0,0], 3:[10,5]}
elements = { 1:[2,3], 2:[1,3] }
densities = {1:0.284, 2:0.284}
stiffnesses= {1:30.0e6, 2:30.0e6}
areas= {1:1.0, 2:2.0}
degrees_of_freedom = { 1:[1,2], 2:[3,4], 3:[5,6] }
restrained_dofs = [1, 2, 3, 4]
forces = { 1:[0,0], 2:[0,0], 3:[0,-200] }
I am trying to integrate the values above from a text file into the code below;
import numpy as np
from numpy.linalg import norm
from scipy.linalg import eigh
import matplotlib.pyplot as plt
# read input file
def setup():
# define the coordinate system
x_axis = np.array([1,0])
y_axis = np.array([0,1])
filepath = 'input.txt'
with open(filepath) as fp:
line = fp.readline()
cnt = 1
while line:
line = fp.readline()
cnt += 1
ndofs = 2 * len(nodes)
# assertions
assert len(densities) == len(elements) == len(stiffnesses) == len(areas)
assert len(restrained_dofs) < ndofs
assert len(forces) == len(nodes)
return { 'x_axis':x_axis, 'y_axis':y_axis, 'nodes':nodes, 'degrees_of_freedom':degrees_of_freedom, \
'elements':elements, 'restrained_dofs':restrained_dofs, 'forces':forces, 'ndofs':ndofs, \
'densities':densities, 'stiffnesses':stiffnesses, 'areas':areas }
def plot_nodes(nodes):
x = [i[0] for i in nodes.values()]
y = [i[1] for i in nodes.values()]
size = 400
offset = size/4000.
plt.scatter(x, y, c='y', s=size, zorder=5)
for i, location in enumerate(zip(x,y)):
plt.annotate(i+1, (location[0]-offset, location[1]-offset), zorder=10)
def points(element, properties):
elements = properties['elements']
nodes = properties['nodes']
degrees_of_freedom = properties['degrees_of_freedom']
# find the nodes that the lements connects
fromNode = elements[element][0]
toNode = elements[element][1]
# the coordinates for each node
fromPoint = np.array(nodes[fromNode])
toPoint = np.array(nodes[toNode])
# find the degrees of freedom for each node
dofs = degrees_of_freedom[fromNode]
dofs.extend(degrees_of_freedom[toNode])
dofs = np.array(dofs)
return fromPoint, toPoint, dofs
def draw_element(fromPoint, toPoint, element, areas):
x1 = fromPoint[0]
y1 = fromPoint[1]
x2 = toPoint[0]
y2 = toPoint[1]
plt.plot([x1, x2], [y1, y2], color='g', linestyle='-', linewidth=7*areas[element], zorder=1)
def direction_cosine(vec1, vec2):
return np.dot(vec1,vec2) / (norm(vec1) * norm(vec2))
def rotation_matrix(element_vector, x_axis, y_axis):
# find the direction cosines
x_proj = direction_cosine(element_vector, x_axis)
y_proj = direction_cosine(element_vector, y_axis)
return np.array([[x_proj,y_proj,0,0],[0,0,x_proj,y_proj]])
def get_matrices(properties):
# construct the global mass and stiffness matrices
ndofs = properties['ndofs']
nodes = properties['nodes']
elements = properties['elements']
forces = properties['forces']
areas = properties['areas']
x_axis = properties['x_axis']
y_axis = properties['y_axis']
plot_nodes(nodes)
M = np.zeros((ndofs,ndofs))
K = np.zeros((ndofs,ndofs))
for element in elements:
# find the element geometry
fromPoint, toPoint, dofs = points(element, properties)
element_vector = toPoint - fromPoint
draw_element(fromPoint, toPoint, element, areas) # display the element
# find element mass and stiffness matrices
length = norm(element_vector)
rho = properties['densities'][element]
area = properties['areas'][element]
E = properties['stiffnesses'][element]
Cm = rho * area * length / 6.0
Ck = E * area / length
m = np.array([[2,1],[1,2]])
k = np.array([[1,-1],[-1,1]])
# find rotated mass and stiffness element matrices
tau = rotation_matrix(element_vector, x_axis, y_axis)
m_r = tau.T.dot(m).dot(tau)
k_r = tau.T.dot(k).dot(tau)
# change from element to global coordinates
index = dofs-1
B = np.zeros((4,ndofs))
for i in range(4):
B[i,index[i]] = 1.0
M_rG = B.T.dot(m_r).dot(B)
K_rG = B.T.dot(k_r).dot(B)
M += Cm * M_rG
K += Ck * K_rG
# construct the force vector
F = []
for f in forces.values():
F.extend(f)
F = np.array(F)
# remove the restrained dofs
remove_indices = np.array(properties['restrained_dofs']) - 1
for i in [0,1]:
M = np.delete(M, remove_indices, axis=i)
K = np.delete(K, remove_indices, axis=i)
F = np.delete(F, remove_indices)
return M, K, F
def get_stresses(properties, X):
x_axis = properties['x_axis']
y_axis = properties['y_axis']
elements = properties['elements']
E = properties['stiffnesses']
# find the stresses in each member
stresses = []
for element in elements:
# find the element geometry
fromPoint, toPoint, dofs = points(element, properties)
element_vector = toPoint - fromPoint
# find rotation matrix
tau = rotation_matrix(element_vector, x_axis, y_axis)
global_displacements = np.array([0,0,X[0],X[1]])
q = tau.dot(global_displacements)
# calculate the strains and stresses
strain = (q[1] - q[0]) / norm(element_vector)
stress = E[element] * strain
stresses.append(stress)
return stresses
def show_results(X, stresses, frequencies):
print ('Nodal Displacments:', X)
print ('Stresses:', stresses)
print ('Frequencies:', frequencies)
print ('Displacment Magnitude:', round(norm(X),5))
print
def main():
# problem setup
properties = setup()
# determine the global matrices
M, K, F = get_matrices(properties)
# find the natural frequencies
evals, evecs = eigh(K,M)
frequencies = np.sqrt(evals)
# calculate the static displacement of each element
X = np.linalg.inv(K).dot(F)
# determine the stresses in each element
stresses = get_stresses(properties, X)
# output results
show_results(X, stresses, frequencies)
plt.title('Analysis of Truss Structure')
plt.show()
if __name__ == '__main__':
main()
Executing code from an input file is a big security risk and a bad habit. If you insist on doing it, 'exec' will run text input as code.
However, a cleaner way would be to read the file as data into a dictionary, then use the dictionary elements instead of actual variables, and you're returning the dictionary already. Something like:
The multiple cleanups are there to take your input file as is. If you can clean it up a little (no '=', more consistent spacing) that line can be simplified.