How is Turing Machine which accepts nothing is not Recursively Enumerable.
How is Turing Machine which accepts nothing is not Recursively Enumerable?
5k Views Asked by Venu Gopal Bandhakavi At
1
There are 1 best solutions below
Related Questions in COMPUTATION-THEORY
- Add additional fields to Linq group by
- couldn't copy pdb file to another directory while consuming wcf web service
- Why are the aliases for string and object in lowercase?
- WPF MessageBox Cancel checkbox check
- Resolve object using DI container with object instance
- Creating a parametrized field name for a SELECT clause
- Does compiler optimize operation on const variable and literal const number?
- Get data from one form to another form in C#
- Writing/Overwriting to specific XML file from ASP.NET code behind
- Deleting Orphans with Fluent NHibernate
Related Questions in TURING-MACHINES
- Add additional fields to Linq group by
- couldn't copy pdb file to another directory while consuming wcf web service
- Why are the aliases for string and object in lowercase?
- WPF MessageBox Cancel checkbox check
- Resolve object using DI container with object instance
- Creating a parametrized field name for a SELECT clause
- Does compiler optimize operation on const variable and literal const number?
- Get data from one form to another form in C#
- Writing/Overwriting to specific XML file from ASP.NET code behind
- Deleting Orphans with Fluent NHibernate
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
Popular # Hahtags
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
We will use an indirect argument to show that the language of encodings of Turing Machines that accept nothing cannot be recursively enumerable.
Lemma 1: if L and its complement are recursively enumerable, then L is recursive.
Proof: let M be a TM that enumerates L and M' be a TM that enumerates the complement of L. Given any string s, we can decide whether s is in L as follows. Begin running M and M', interleaving their executions so that each one eventually gets an arbitrary amount of runtime. If s is in L, M will eventually list it, at which point we know s is in L and we halt-accept. If s is not in L, M' will eventually list it, at which point we know s is not in L and we halt-reject. Thus, for any s, we can halt-accept if s is in L or halt-reject otherwise. Therefore, L and its complement are recursive.
Lemma 2: The language of encodings of Turing Machines that accept something is recursively enumerable.
Proof: The set of all Turing Machine encodings is countable, and so is the set of all possible tape inputs. Thus, the set (M, s) of pairs of machines and inputs is countable. We may therefore assume some ordering of these pairs p1, p2, ..., pk, ... For each pair p = (M, s), begin executing machine M on input s, interleaving the executions of pairs p1, p2, ..., pk, ... so each eventually gets an arbitrary amount of runtime. If pk enters the halt-accept state, we may immediately list M as a TM that accepts something (namely, the corresponding s), and we can even terminate all other running instances checking the same M (and forego starting any new ones). Any machine M that accepts some input will eventually be started and will eventually halt-accept on an input, so all machines are eventually enumerated.
Lemma 3: The language of encodings of Turing Machines that accept nothing is not recursive.
Proof: This is a direct result of Rice's Theorem. The property "accepts nothing" is a semantic property of the language itself and is true for some, but not all, languages; therefore, no TM can decide whether another TM accepts a language with the property or not.
Theorem: The language of encodings of Turing Machines that accept nothing is not recursively enumerable.
Proof: Assume this language is recursively enumerable. We have already proven in Lemma 2 that its complement is recursively enumerable. By Lemma 1, then, both languages are recursive. However, Lemma 3 proves that the language is not recursive. This is a contradiction. The only assumption was that the language is recursively enumerable, so that assumption must have been false: so the language is not recursively enumerable.