How to find the most likely sequences of hidden states for a Hidden Markov Model

1.5k Views Asked by At

The Viterbi algorithm finds the most likely sequence of hidden states in a Hidden Markov Model. I am currently using the following awesome code by hhquark.

import numpy as np


def viterbi_path(prior, transmat, obslik, scaled=True, ret_loglik=False):
    '''Finds the most-probable (Viterbi) path through the HMM state trellis
    Notation:
        Z[t] := Observation at time t
        Q[t] := Hidden state at time t
    Inputs:
        prior: np.array(num_hid)
            prior[i] := Pr(Q[0] == i)
        transmat: np.ndarray((num_hid,num_hid))
            transmat[i,j] := Pr(Q[t+1] == j | Q[t] == i)
        obslik: np.ndarray((num_hid,num_obs))
            obslik[i,t] := Pr(Z[t] | Q[t] == i)
        scaled: bool
            whether or not to normalize the probability trellis along the way
            doing so prevents underflow by repeated multiplications of probabilities
        ret_loglik: bool
            whether or not to return the log-likelihood of the best path
    Outputs:
        path: np.array(num_obs)
            path[t] := Q[t]
    '''
    num_hid = obslik.shape[0] # number of hidden states
    num_obs = obslik.shape[1] # number of observations (not observation *states*)

    # trellis_prob[i,t] := Pr((best sequence of length t-1 goes to state i), Z[1:(t+1)])
    trellis_prob = np.zeros((num_hid,num_obs))
    # trellis_state[i,t] := best predecessor state given that we ended up in state i at t
    trellis_state = np.zeros((num_hid,num_obs), dtype=int) # int because its elements will be used as indicies
    path = np.zeros(num_obs, dtype=int) # int because its elements will be used as indicies

    trellis_prob[:,0] = prior * obslik[:,0] # element-wise mult
    if scaled:
        scale = np.ones(num_obs) # only instantiated if necessary to save memory
        scale[0] = 1.0 / np.sum(trellis_prob[:,0])
        trellis_prob[:,0] *= scale[0]

    trellis_state[:,0] = 0 # arbitrary value since t == 0 has no predecessor
    for t in xrange(1, num_obs):
        for j in xrange(num_hid):
            trans_probs = trellis_prob[:,t-1] * transmat[:,j] # element-wise mult
            trellis_state[j,t] = trans_probs.argmax()
            trellis_prob[j,t] = trans_probs[trellis_state[j,t]] # max of trans_probs
            trellis_prob[j,t] *= obslik[j,t]
        if scaled:
            scale[t] = 1.0 / np.sum(trellis_prob[:,t])
            trellis_prob[:,t] *= scale[t]

    path[-1] = trellis_prob[:,-1].argmax()
    for t in range(num_obs-2, -1, -1):
        path[t] = trellis_state[(path[t+1]), t+1]

    if not ret_loglik:
        return path
    else:
        if scaled:
            loglik = -np.sum(np.log(scale))
        else:
            p = trellis_prob[path[-1],-1]
            loglik = np.log(p)
        return path, loglik


if __name__=='__main__':
    # Assume there are 3 observation states, 2 hidden states, and 5 observations
    priors = np.array([0.5, 0.5])
    transmat = np.array([
        [0.75, 0.25],
        [0.32, 0.68]])
    emmat = np.array([
        [0.8, 0.1, 0.1],
        [0.1, 0.2, 0.7]])
    observations = np.array([0, 1, 2, 1, 0], dtype=int)
    obslik = np.array([emmat[:,z] for z in observations]).T
    print viterbi_path(priors, transmat, obslik)                                #=> [0 1 1 1 0]
    print viterbi_path(priors, transmat, obslik, scaled=False)                  #=> [0 1 1 1 0]
    print viterbi_path(priors, transmat, obslik, ret_loglik=True)               #=> (array([0, 1, 1, 1, 0]), -7.776472586614755)
    print viterbi_path(priors, transmat, obslik, scaled=False, ret_loglik=True) #=> (array([0, 1, 1, 1, 0]), -8.0120386579275227)

However, what I really need is not just the most likely sequence, but the top k most likely sequences of hidden states.

How can this code be modified to give the top k most likely sequences?

1

There are 1 best solutions below

1
David Eisenstat On

Viewed another way, the Viterbi algorithm computes shortest paths in an acyclic weighted graph whose nodes are (hidden state, time) pairs. You can use Yen's algorithm to find the top k shortest paths, which translate to the top k most likely sequences. Here's an implementation of Yen's algorithm in NetworkX.

To set up the graph, we start with a source node and a sink node. For all states i, make arcs from the source node to nodes (i, 0) with weight log(prior[i] * obslik[i, 0]). For all states i, all states j, and all times t > 0, make arcs from nodes (i, t-1) to (j, t) with weight log(transmat[i, j] * obslik[j, t]). Letting T be the last time, make arcs from (i, T) to the sink with weight 0. Each path from the source to the sink is in one-to-one correspondence with a sequence of hidden states, and the length of the path is the log-likelihood of that sequence.