I am trying to generate single precision floating point random number using FPGA by generating number between 0 and 0x3f80000 (IEEE format for 1). But since there are more number of discreet points near to zero than 1, I am not getting uniform generation. Is there any transformation which I can apply to mimic uniform generation. I am using LFSR(32 Bit) and Xoshiro random number generation.
How to generate uniform single precision floating point random number between 0 and 1 in FPGA?
971 Views Asked by Rishi Jaiswal At
2
There are 2 best solutions below
0

Please check the xoshiro128+ here https://prng.di.unimi.it/xoshiro128plus.c
The VHDL code written by someone can be found here: https://github.com/jorisvr/vhdl_prng/tree/master/rtl
The seed value is generated from another random number generation algorithm so don't get confused by this.
Depending on the seed value used it should give a uniform distribution.
A standard way to generate uniformly distributed
float
s in [0,1) from uniformly distributed 32-bit unsigned integers is to multiply the integers with 2-32. Obviously we wouldn't instantiate a floating-point multiplier on the FPGA just for this purpose, and we do not have to, since the multiplier is a power of two. In essence what is needed is a conversion of the integer to a floating-point number, then decrementing the exponent of the floating-point number by 32. This does not work for a zero input which has to be handled as a special case. In the ISO-C99 code below I am assuming thatfloat
is mapped to IEEE-754binary32
type.Other than for certain special cases, the significand of an IEEE-754 binary floating-point number is normalized to [1,2). To convert an integer into the significand, we need to normalize it, so the most significant bit is set. We can do this by counting the number of leading zero bits, then left shifting the number by that amount. The count of leading zeros is also needed to adjust the exponent.
The significand of a
binary32
number comprises 24 bits, of which only 23 bits are stored; the most significant bit (the integer bit) is always one and therefore implicit. This means not all of the 32 bits of the integer can be incorporated into thebinary32
, so in converting a 32-bit unsigned integer one usually rounds to 24-bit precision. To simplify the implementation, in the code below I simply truncate by cutting off the least significant eight bits, which should have no noticeable effect on the uniform distribution. For the exponent part, we can combine the adjustments due to normalization step with the subtraction due to the scale factor of 2-32.The code below is written using hardware-centric primitives. Extracting a bit is just a question of grabbing the correct wire, and shifts by fixed amounts are likewise simply wire shifts. The circuit needed to count the number of leading zeros is typically called a priority encoder.