I am following the Tensorflow Recommenders tutorial (https://www.tensorflow.org/recommenders/examples/context_features) and built a model with multiple features. When trying to get the final recommendations, I am just getting a bunch of Tensors:
b'Tensor("args_1:0", shape=(), dtype=string)', b'Tensor("args_1:0", shape=(), dtype=string)'
and not the actual values.
My code looks the following:
# Use brute-force search to set up retrieval using the trained representations
index = tfrs.layers.factorized_top_k.BruteForce(model.query_model, k=10)
index.index_from_dataset(
test_interactions.batch(100).map(lambda features: (
features['title_id'],
model.candidate_model({
'title_id': features['title_id'],
'category': features['category'],
})
))
)
# Get some recommendations
rec = test_interactions.batch(100).map(lambda features: index({
'customer_id': features['customer_id'],
'timestamp': features['timestamp'],
}))
# Evaluate the recommendations
for _, recommendations in rec:
product_ids = [tensor.numpy() for tensor in recommendations]
print(product_ids)
Ideally I would like to get the customer_id and a list of the top k products.
What am I doing wrong?