I established a transfer learning model and tried to get the intermediate output. I followed one of the suggestion here in order to get the intermediate output of a model, as follows:
import tensorflow as tf
from tensorflow.keras import backend as K
tf.enable_eager_execution()
base_conv = tf.keras.applications.MobileNetV2(input_shape= None,
alpha=1.0, depth_multiplier=1, \
include_top=True, weights='imagenet', input_tensor=None, \
pooling=None, classes=1000)
model = tf.keras.models.Sequential()
model.add(base_conv)
model.add(tf.keras.layers.Dense(512, activation='relu'))
model.add(tf.keras.layers.Dense(5, activation='softmax'))
# with a Sequential model
get_layer_output = K.function([model.layers[0].input],
[model.layers[0].get_layer('Conv_1').output])
#x is the input image
layer_output = get_layer_output([x])
But then I got an error:
AttributeError: Tensor.name is meaningless when eager execution is enabled.