This requires (linear) damage accumulation rule. Assume global load sharing. Specifically, incorporate into your model the possibility of reducying fiber diameters due to corrosion, where proximity to outer surface is accounted for by a simple function of distance. Use widgets to display the outcome
I have the following code as a basis:
"""
This functions initalized the system and the load sharing matrix lls_mat
"""
np.random.seed(run["seed"]) #seed random number generator
strength = sys["sweib"]*np.random.weibull(sys["mweib"],(sys["ncx"],sys["ncx"])) #get strength values
stiffness = sys["emod"]*np.ones((sys["ncx"],sys["ncx"])) #populate stiffness matrix
damage = np.zeros((sys["ncx"],sys["ncx"])) #initialize damage matrix
stress = np.zeros((sys["ncx"],sys["ncx"])) #initialize loading matrix
avalanche = np.zeros((sys["ncx"],sys["ncx"])) #initialize damage history matrix
lls_mat = np.zeros((sys["ncx"],sys["ncx"])) #initialize load sharing matrix
#calculate load shearing matrix that is applied like a stencil
for i in range(sys["ncx"]):
for j in range(sys["ncy"]):
if sys["pbs"]:#only even numbers allowed
i1 = i; j1 = j;
if i > sys["ncx"]/2: i1 = sys["ncx"]-i
if j > sys["ncy"]/2: j1 = sys["ncy"]-j
dist=math.sqrt(i1**2 + j1**2);
else:
dist = math.sqrt( i**2 + j**2 );
if dist>0: lls_mat[i,j] = 1 / ((dist)**sys["gamma"])
p = np.append(lls_mat[:,-1:0:-1],lls_mat,1)
p2 = p[-1:0:-1,:]
lls_mat = np.append(p2,p,0)
run["strain"] = np.array([0.]) #clear strain evolution
run["stress"] = np.array([0.]), #clear stress evolution
run["avalanchesize"] = np.array([0.]) #clear damage evolution
return lls_mat, strength, stiffness, damage, stress, avalanche, run
def increment_strain(strength,stress):
"""
This functions increments stress to the failure of the next weakest intact fiber
"""
capacity = strength-stress
min_idx = np.where(capacity == np.amin(capacity))
stress_inc = strength[min_idx[0],min_idx[1]]-stress[min_idx[0],min_idx[1]]
stress = stress + stress_inc;
capacity = strength - stress
min_index = np.nonzero(capacity<=0.)
tobreak = [min_index] #list of elemets that need breaking.
return tobreak, stress, stress_inc
def damage_fibers(tobreak,damage):
"""
This functions markes damaged fibers in the damage matrix
"""
for i in range(len(tobreak[0][0])):
damage[tobreak[0][0][i],tobreak[0][1][i]]=1
return damage
def load_sharing(sys,lls_mat,tobreak,damage,stress,strength):
"""
This functions redistributes the load of broken fibers to intact ones that are not marked for failure
"""
for i in range(len(tobreak[0][0])):
f1, t1 = int(sys["ncx"]-1-tobreak[0][0][i]), int(sys["ncx"]-1-tobreak[0][0][i]+sys["ncx"])
f2, t2 = int(sys["ncy"]-1-tobreak[0][1][i]), int(sys["ncy"]-tobreak[0][1][i]+sys["ncy"]-1)
x = lls_mat[f1:t1, f2:t2]
intact = x * ( 1 - damage )
stress = stress + strength[tobreak[0][0][i],tobreak[0][1][i]]*intact/np.sum(intact)
strength[tobreak[0][0][i],tobreak[0][1][i]] = 1000 * sys["sweib"] # so it will not be found as new failing elmt
return stress, strength
def new_inc_stress(strength,stress,avalanche,load_inc):
"""
This functions works within avalanches and checks what fibers fail due to load redistribution
"""
capacity = strength - stress
min_index = np.nonzero( capacity<0. )
tobreak = [min_index] #list of elemets that need to be broken.
for i in range(len(tobreak[0][0])): avalanche[tobreak[0][0][i],tobreak[0][1][i]] = load_inc #store damage evolution pattern
return tobreak, avalanche
def studyFBM(syssize=100,gamma=0,weibullmod=3,CharStr=700,Emod=1000,pbs=False, seed = 1):
# system and simulation parameters
sys={"ncx": syssize, # number of fibers in x-/y-direction (gerade Zahlen)
"ncy": syssize,
"emod": Emod, # Stiffness of fibers in MPa
"sweib": CharStr, # Weibull scale parameter of fiber strengths [MPa]
"mweib": weibullmod, # Weibull shape parameter of fiber strengths
"gamma": gamma, # Range of interaction =0 for GLS and infty for LLS
"pbs": pbs} # periodic boundary conditions 1=switched on
run={"seed": seed, #seed for random number generator
"debug": True,
"saveto": "", # savepath
"strain": np.array([0.]), # strain evolution
"stress": np.array([0.]), # stress evolution
"avalanchesize":np.array([0.])} # damage evolution
# The main routine for the FBM simulation with variable load range
lls_mat, strength, stiffness, damage, stress, avalanche, run = init_system( sys, run) #initialize the system
inc = 0
nfibs = sys["ncx"] * sys["ncy"] # number of fibers
load_inc, aval, stress_evo = 0, 0, 0.
print("Running a FBM with {} fibers with Weibull fiber strength distribution (m,sigma) ({},{}) \n and load sharing parameter gamma={}".format(nfibs,sys["mweib"],sys["sweib"],sys["gamma"]))
while np.sum(damage) < 0.8*nfibs: # stop when 80% of the system is broken
tobreak, stress, stress_inc = increment_strain( strength, stress) # increment the strain on the system and break weakest element
load_inc += 1
stress_evo = stress_evo + stress_inc
run["strain"] = np.append( run["strain"], stress_evo / sys["emod"]) # store strain
avalanche[ tobreak[0][0][0], tobreak[0][1][0]] = load_inc # store damage evolution pattern
while len( tobreak[0][0] ) > 0:
stress, strength = load_sharing( sys, lls_mat, tobreak, damage, stress, strength) # redistrirbute load
damage = damage_fibers( tobreak, damage) # damage all overloaded fibers
tobreak, avalanche = new_inc_stress( strength, stress, avalanche, load_inc) # identify new overloaded fibers
if (np.sum( damage ) > 0.8 * nfibs): print(">>>Final stop since system is broken"); break # stop when half of the system is broken
inc += 1
if ( inc > nfibs ): print("emergency stop something is wrong"); break # stop when load increments exceed the number of fibers
run["stress"] = np.append( run["stress"], np.sum( stress * ( 1 - damage ) ) / nfibs ) # store stress
run["avalanchesize"] = np.append( run["avalanchesize"], np.sum(damage)) # store avalance size
min_index = np.nonzero( avalanche == 0) # complement list of elemets that fail in the final increment
tobreak = [ min_index ]
for i in range( len( tobreak[0][0] ) ): avalanche[ tobreak[0][0][i], tobreak[0][1][i]] = load_inc
fig, ax = plt.subplots(2,2,figsize=(10,6)); plt.subplots_adjust(hspace = 0.3); plt.subplots_adjust(wspace = 0.3) # plots for a single realization
pcm1=ax[0,0].imshow(avalanche); ax[0,0].set_title("damage evolution");
pcm2=ax[0,1].imshow(lls_mat); ax[0,1].set_title("load sharing");
fig.colorbar(pcm1,ax=ax[0,0],label='# of iterations'), fig.colorbar(pcm2,ax=ax[0,1],label='load sharing portion')
ax[1,0].plot(run["strain"], run["stress"]); ax[1,0].set_title("stess-strain plot"); ax[1,0].set_xlabel('$\\varepsilon$ [-]'); ax[1,0].set_ylabel('$\\sigma$');
ax[1,1].plot(run["strain"], run["avalanchesize"]/nfibs); ax[1,1].set_title("broken area fraction-strain plot"); ax[1,1].set_xlabel('$\\varepsilon$ [-]'); ax[1,1].set_ylabel('$A_{broken}/A_{tot}$');
plt.show()
return avalanche
But then I dont know how to include the Miners rule and Wöhler curvers and how to consider corrosion. I had an idea to include the corrosion but I dont really know if it's right and where and how to include it in the code:
fiber_position = [[(row,col) for col in range(ncy)] for row in range(ncx)]
fiber_diameters = d_0 - c * fiber_position #d_0 is initial fiber diameter, c is corrosion rate parameter