How to save Keras Image captioning model?

40 Views Asked by At

I am using an image captioning example provided by Keras. You can access the code at this link: https://keras.io/examples/vision/image_captioning/. What I am interested in is training the model, which consists of a convolutional neural network, a transformer encoder, and a transformer decoder. Then, I want to save the entire model for later use. I am following this guide, to which I am attaching the link: https://keras.io/guides/serialization_and_saving/#introduction; however, I haven't been able to do it successfully yet. I'm seeking advice to resolve this.

def get_cnn_model():
    base_model = efficientnet.EfficientNetB0(
        input_shape=(*IMAGE_SIZE, 3),
        include_top=False,
        weights="imagenet",
    )
    # We freeze our feature extractor
    base_model.trainable = False
    base_model_out = base_model.output
    base_model_out = layers.Reshape((-1, base_model_out.shape[-1]))(base_model_out)
    cnn_model = keras.models.Model(base_model.input, base_model_out)
    return cnn_model


class TransformerEncoderBlock(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.0
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.dense_1 = layers.Dense(embed_dim, activation="relu")

    def call(self, inputs, training, mask=None):
        inputs = self.layernorm_1(inputs)
        inputs = self.dense_1(inputs)

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=None,
            training=training,
        )
        out_1 = self.layernorm_2(inputs + attention_output_1)
        return out_1


class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super().__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim
        self.embed_scale = tf.math.sqrt(tf.cast(embed_dim, tf.float32))

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_tokens = embedded_tokens * self.embed_scale
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return tf.math.not_equal(inputs, 0)


class TransformerDecoderBlock(layers.Layer):
    def __init__(self, embed_dim, ff_dim, num_heads, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = embed_dim
        self.ff_dim = ff_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim, dropout=0.1
        )
        self.ffn_layer_1 = layers.Dense(ff_dim, activation="relu")
        self.ffn_layer_2 = layers.Dense(embed_dim)

        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()

        self.embedding = PositionalEmbedding(
            embed_dim=EMBED_DIM,
            sequence_length=SEQ_LENGTH,
            vocab_size=VOCAB_SIZE,
        )
        self.out = layers.Dense(VOCAB_SIZE, activation="softmax")

        self.dropout_1 = layers.Dropout(0.3)
        self.dropout_2 = layers.Dropout(0.5)
        self.supports_masking = True

    def call(self, inputs, encoder_outputs, training, mask=None):
        inputs = self.embedding(inputs)
        causal_mask = self.get_causal_attention_mask(inputs)

        if mask is not None:
            padding_mask = tf.cast(mask[:, :, tf.newaxis], dtype=tf.int32)
            combined_mask = tf.cast(mask[:, tf.newaxis, :], dtype=tf.int32)
            combined_mask = tf.minimum(combined_mask, causal_mask)

        attention_output_1 = self.attention_1(
            query=inputs,
            value=inputs,
            key=inputs,
            attention_mask=combined_mask,
            training=training,
        )
        out_1 = self.layernorm_1(inputs + attention_output_1)

        attention_output_2 = self.attention_2(
            query=out_1,
            value=encoder_outputs,
            key=encoder_outputs,
            attention_mask=padding_mask,
            training=training,
        )
        out_2 = self.layernorm_2(out_1 + attention_output_2)

        ffn_out = self.ffn_layer_1(out_2)
        ffn_out = self.dropout_1(ffn_out, training=training)
        ffn_out = self.ffn_layer_2(ffn_out)

        ffn_out = self.layernorm_3(ffn_out + out_2, training=training)
        ffn_out = self.dropout_2(ffn_out, training=training)
        preds = self.out(ffn_out)
        return preds

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [
                tf.expand_dims(batch_size, -1),
                tf.constant([1, 1], dtype=tf.int32),
            ],
            axis=0,
        )
        return tf.tile(mask, mult)


class ImageCaptioningModel(keras.Model):
    def __init__(
        self,
        cnn_model,
        encoder,
        decoder,
        num_captions_per_image=5,
        image_aug=None,
    ):
        super().__init__()
        self.cnn_model = cnn_model
        self.encoder = encoder
        self.decoder = decoder
        self.loss_tracker = keras.metrics.Mean(name="loss")
        self.acc_tracker = keras.metrics.Mean(name="accuracy")
        self.num_captions_per_image = num_captions_per_image
        self.image_aug = image_aug

    def calculate_loss(self, y_true, y_pred, mask):
        loss = self.loss(y_true, y_pred)
        mask = tf.cast(mask, dtype=loss.dtype)
        loss *= mask
        return tf.reduce_sum(loss) / tf.reduce_sum(mask)

    def calculate_accuracy(self, y_true, y_pred, mask):
        accuracy = tf.equal(y_true, tf.argmax(y_pred, axis=2))
        accuracy = tf.math.logical_and(mask, accuracy)
        accuracy = tf.cast(accuracy, dtype=tf.float32)
        mask = tf.cast(mask, dtype=tf.float32)
        return tf.reduce_sum(accuracy) / tf.reduce_sum(mask)

    def _compute_caption_loss_and_acc(self, img_embed, batch_seq, training=True):
        encoder_out = self.encoder(img_embed, training=training)
        batch_seq_inp = batch_seq[:, :-1]
        batch_seq_true = batch_seq[:, 1:]
        mask = tf.math.not_equal(batch_seq_true, 0)
        batch_seq_pred = self.decoder(
            batch_seq_inp, encoder_out, training=training, mask=mask
        )
        loss = self.calculate_loss(batch_seq_true, batch_seq_pred, mask)
        acc = self.calculate_accuracy(batch_seq_true, batch_seq_pred, mask)
        return loss, acc

    def train_step(self, batch_data):
        batch_img, batch_seq = batch_data
        batch_loss = 0
        batch_acc = 0

        if self.image_aug:
            batch_img = self.image_aug(batch_img)

        # 1. Get image embeddings
        img_embed = self.cnn_model(batch_img)

        # 2. Pass each of the five captions one by one to the decoder
        # along with the encoder outputs and compute the loss as well as accuracy
        # for each caption.
        for i in range(self.num_captions_per_image):
            with tf.GradientTape() as tape:
                loss, acc = self._compute_caption_loss_and_acc(
                    img_embed, batch_seq[:, i, :], training=True
                )

                # 3. Update loss and accuracy
                batch_loss += loss
                batch_acc += acc

            # 4. Get the list of all the trainable weights
            train_vars = (
                self.encoder.trainable_variables + self.decoder.trainable_variables
            )

            # 5. Get the gradients
            grads = tape.gradient(loss, train_vars)

            # 6. Update the trainable weights
            self.optimizer.apply_gradients(zip(grads, train_vars))

        # 7. Update the trackers
        batch_acc /= float(self.num_captions_per_image)
        self.loss_tracker.update_state(batch_loss)
        self.acc_tracker.update_state(batch_acc)

        # 8. Return the loss and accuracy values
        return {
            "loss": self.loss_tracker.result(),
            "acc": self.acc_tracker.result(),
        }

    def test_step(self, batch_data):
        batch_img, batch_seq = batch_data
        batch_loss = 0
        batch_acc = 0

        # 1. Get image embeddings
        img_embed = self.cnn_model(batch_img)

        # 2. Pass each of the five captions one by one to the decoder
        # along with the encoder outputs and compute the loss as well as accuracy
        # for each caption.
        for i in range(self.num_captions_per_image):
            loss, acc = self._compute_caption_loss_and_acc(
                img_embed, batch_seq[:, i, :], training=False
            )

            # 3. Update batch loss and batch accuracy
            batch_loss += loss
            batch_acc += acc

        batch_acc /= float(self.num_captions_per_image)

        # 4. Update the trackers
        self.loss_tracker.update_state(batch_loss)
        self.acc_tracker.update_state(batch_acc)

        # 5. Return the loss and accuracy values
        return {
            "loss": self.loss_tracker.result(),
            "acc": self.acc_tracker.result(),
        }

    @property
    def metrics(self):
        # We need to list our metrics here so the `reset_states()` can be
        # called automatically.
        return [self.loss_tracker, self.acc_tracker]


cnn_model = get_cnn_model()
encoder = TransformerEncoderBlock(embed_dim=EMBED_DIM, dense_dim=FF_DIM, num_heads=1)
decoder = TransformerDecoderBlock(embed_dim=EMBED_DIM, ff_dim=FF_DIM, num_heads=2)
caption_model = ImageCaptioningModel(
    cnn_model=cnn_model,
    encoder=encoder,
    decoder=decoder,
    image_aug=image_augmentation,
)

That is the model. I want to save the last part "caption_model".

# Define the loss function
cross_entropy = keras.losses.SparseCategoricalCrossentropy(
    from_logits=False,
    reduction=None,
)

# EarlyStopping criteria
early_stopping = keras.callbacks.EarlyStopping(patience=3, restore_best_weights=True)


# Learning Rate Scheduler for the optimizer
class LRSchedule(keras.optimizers.schedules.LearningRateSchedule):
    def __init__(self, post_warmup_learning_rate, warmup_steps):
        super().__init__()
        self.post_warmup_learning_rate = post_warmup_learning_rate
        self.warmup_steps = warmup_steps

    def __call__(self, step):
        global_step = tf.cast(step, tf.float32)
        warmup_steps = tf.cast(self.warmup_steps, tf.float32)
        warmup_progress = global_step / warmup_steps
        warmup_learning_rate = self.post_warmup_learning_rate * warmup_progress
        return tf.cond(
            global_step < warmup_steps,
            lambda: warmup_learning_rate,
            lambda: self.post_warmup_learning_rate,
        )


# Create a learning rate schedule
num_train_steps = len(train_dataset) * EPOCHS
num_warmup_steps = num_train_steps // 15
lr_schedule = LRSchedule(post_warmup_learning_rate=1e-4, warmup_steps=num_warmup_steps)

# Compile the model
caption_model.compile(optimizer=keras.optimizers.Adam(lr_schedule), loss=cross_entropy)

# Fit the model
caption_model.fit(
    train_dataset,
    epochs=EPOCHS,
    validation_data=valid_dataset,
    callbacks=[early_stopping],
)

That is the section where you train the model.

Greetings.

As said I am following this guide: https://keras.io/guides/serialization_and_saving/#introduction

0

There are 0 best solutions below